
KNITTIR: Syntactical Text Indexing for Analytics

Thanh-Hi Anthony Vu

thvu@ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

Dhruv Gupta

dhruv.gupta@ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

Abstract
Scalable text analytics requires retrieval of similar text regions

spread across millions of documents. It also requires that we can rea-

son about entities by categorizing them; contrasting them to other

entities; and ranking them using time and numbers. We present

knittir that assists in such complex text analytical tasks. knittir
uses semantic annotations such as parts-of-speech, named entities,

and their syntactical relationships to words in text. To simplify

text analytics, knittir uses a new search framework wherein a

vertical partitioning of semantically annotated text is used. This

allows users to aggregate and manipulate evidences to their queries

from multiple text regions spread across millions of documents. To

scale analytical queries, knittir creates indexes using the syntacti-
cal modeling of annotated text. Our experiments over 22 million

documents show that knittir obtains speedups of up to 60× for

performing similarity search and up to 69K× for reasoning tasks.

CCS Concepts
• Information systems→ Search engine indexing.

Keywords
Analytics; Text Reasoning; Temporal and Numerical Reasoning

ACM Reference Format:
Thanh-Hi Anthony Vu and Dhruv Gupta. 2024. KNITTIR: Syntactical Text

Indexing for Analytics. In Proceedings of Joint Conference on Digital Libraries
(JCDL ’24). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3677389.3702486

1 Introduction
Scholars in digital humanities, social scientists, and computational

journalists require the capability to process large document col-

lections for analytics [19, 35, 52]. Analytical tasks for these users

involve: text (words, phrases, and sentences); named entities (per-

sons, organizations, and locations); and temporal and numerical

expressions [35]. A typical set of analytical tasks for these users

can be summarized as follows: the retrieval of pseudo-relevant doc-

uments; probing for query-specific text regions; organizing them in

categories; contrasting them to other entities; and finally perform-

ing aggregation for relevant statistics [52]. Such complex analytical

tasks are often manual, repetitive, and dredging [52].

This work is licensed under a Creative Commons Attribution

International 4.0 License.

JCDL ’24, December 16–20, 2024, Hong Kong, China
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1093-3/24/12

https://doi.org/10.1145/3677389.3702486

Current search systems, however, are deemed insufficient by

scholars in humanities for aforementioned complex analytical tasks

[29, 30, 34, 52]. Harris et al. [29, 30] describe that search systems

that rely on term-based indexes fail to provide similarity search

capability, which is essential for scholars in humanities, as they

rely on queries composed of motifs or templates to extract similar

text regions. Modern vector-based indexes can provide similarity

search capabilities; however, they lack explainability and manipula-

bility. In particular, manipulability is important as Terras et al. [52]

observed that scholars in digital humanities often require a handful

of key queries to formulate their research problem that have very
slow response times. An example analytics task they describe is

reasoning about entities by: extracting entities from documents,

computing their frequency over time, and contrasting them with

other related entities over the same time period. If such capabilities

can be provided as operators in search systems, much like native

database operators, it would allow the scholars to perform complex

text analytics tasks with ease. Moreover, a recent survey by Liu et

al. [34] outlines that available text analysis platforms can not scale

to large document collections. This is important as both Terras et

al. [52] and Liu and Wang [35] mention that scholars in digital hu-

manities search in an iterative manner, such that their queries can

change based on the retrieved results. Therefore, highlighting the

need for a search system that can execute analytical queries quickly.

In summary, the key desiderata for a search system to speedup

such complex analytical tasks are: fast response times for similarity

search; reasoning abilities as operators for categorizing entities, con-

trasting entities, and ranking them using temporal and numerical

expressions. To serve such text-centric analytical needs of applied

scientists, currently, there are two kinds of solutions available for

text retrieval: term-based inverted indexes and vector-based in-

dexes. We next describe the challenges with search systems that

leverage term-based and vector-based indexes. We then outline

how knittir overcomes these challenges and simplifies complex

text analytical tasks.

Term-based Indexes (e.g., Lucene [2, 6]) provide Boolean oper-

ators to retrieve pseudo-relevant documents. Key benefits of term

indexes are: small indexes (comparable to raw collection size) and

fast query response times. However, a key drawback of term in-

dexes is that they lack the capability of performing similarity search

directly. Indirect similarity search can be done using relevance feed-

back to improve the initial result set. Extensions to term indexes

can provide proximity search (using word positions) and semantic

search (using annotations). However, current implementations that

index annotations [13, 26] draw them from paraphrase dictionar-

ies or knowledge graphs (KGs). This limits contextual similarity

search for domain-specific text (e.g., green energy is similar to

clean energy) which can only be done using the collection.

https://doi.org/10.1145/3677389.3702486
https://doi.org/10.1145/3677389.3702486
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3677389.3702486
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677389.3702486&domain=pdf&date_stamp=2025-03-13

JCDL ’24, December 16–20, 2024, Hong Kong, China Thanh-Hi Anthony Vu and Dhruv Gupta

Vector-based Indexes achieve similarity search, by transform-

ing text into a high-dimensional representation such that each term

in text is represented as a vector. Since, these representations are

very sparse for large document collections, a more meaningful

projected dense representation can be obtained via deep learning

methods (e.g., word2vec [38]). For retrieval of similar text regions

corresponding to a query essentially boils down to efficient com-

putation of distances to determine nearest neighbors in the new

projected dense space. This computation corresponds to finding

vectors that have the maximum dot product with respect to the

query vector [4, 25, 39]. Key advantages of vector-based indexes

is that they can leverage several machine-level optimizations such

as vector-based CPU and GPU instructions to speed up the result

computation. Furthermore, they offer similarity search implicitly

such that these aspects need not be explicitly modeled. This is par-

ticularly advantageous, for instance, when compared with pseudo-

relevance feedback. However, there are several key disadvantages

that prohibit their deployment for analytical tasks. First, the seman-

tics are modeled implicitly by modeling text in a high-dimensional

space and utilizing a projected dense representation. This allows

the user little or no text manipulability. The user has control only

over a distance computation between the query and the text vector.

To provide any context or semantics the user has do multiple cycles

of post-hoc analysis to arrive at the certainty of the results; thus,

slowing down the overall analytics workflow. Moreover, for many

of the compute-affordable dense representations it is impossible

to recover contextual semantics as a bag-of-words text model is

leveraged [38]. Second, to speed up the dot product computation

several lossy compression and quantization techniques are applied

such that results are never exact thus hurting high-recall analytic-

centric tasks. In fact, vector-based indexes achieve complete recall

only by using a linear scan [12]. Third, users are severely limited

in utilizing vector-based indexes if they are compute-restrained.

That is, if only commodity based hardware is available then there

is little benefit of using such storage schemes. Fourth and finally, it

has been well-documented that dense retrieval approaches do not

offer any temporal and numerical reasoning capability [44] which

is central to many analytical tasks.

Contributions.We present knittir which overcomes aforemen-

tioned challenges. First, knittir models text using its syntactical

structure and semantic annotations for similarity search. Syntactical

modeling provides users explainability of knittir’s search method

versus the opaqueness of existing vector-based search [4, 25, 39].

Moreover, syntactical modeling provides domain-specific contex-

tualization, which is not possible with dictionary and KG based

indexing methods [13, 55]. Second, knittir provides categorical,

contrastive, temporal, and numerical reasoning for entities. Third

and finally, knittir streamlines analytical tasks with a new search

framework of vertical partitioned annotated text regions.

An Example Analytics Workflow that can be accomplished

with knittir is shown in Figure 1. The user initiates the analytics

workflow with the query “williams wins olympic medal” to re-

trieve similar text regions containing mentions of other athletes

who have also won a medal or an award. Harris et al. [29, 30] de-

scribe that such search tasks are important for scholars in digital

humanities to identify parallel passages. In Figure 1a, the results

are presented as a vertically partitioned result set. Each row in the

williams wins olympic medal TEXT REGION

benoit-samuelson
⊕ PERSON

win ⊕ VB medal ⊕
MISC

[benoit-samuelson won the 1984
olympic gold medal]

williams ⊕
PERSON

win ⊕ VB open ⊕ MISC [williams won the australian
open][williams won the australian
open and the french open]

o’reilly ⊕
PERSON

win ⊕ VB cup ⊕ MISC [o’reilly 32 won three olympic gold
medals and the 2015 world cup]

nadal ⊕ PERSON win ⊕ VB cup ⊕ MISC [nadal has won the olympic gold medal
in singles has won the davis cup]

williams ⊕
PERSON

clinch ⊕
VB

slam ⊕ MISC [williams clinches a single-season
grand slam]

williams ⊕
PERSON

earn ⊕
VB

globe ⊕
MISC

[williams earned a golden globe]

(a)

GROUP TEXT REGION

champion
⊕NN

[nadal is the
defending champion]

spaniard
⊕MISC

[spaniard nadal]

athlete⊕NN [athletes like roger
federer rafael nadal]

(b)

EXPAND TEXT REGION

lebron james
⊕PERSON

[athletes including lebron james]

serena williams
⊕PERSON

[serena williams is the highest
paid female athlete]

tiger woods
⊕PERSON

[tiger woods is just the latest
prima donna professional athlete]

(c)

OUTLIER TEXT REGION

actor⊕NN [actor but a
terrible athlete]

student⊕NN [athlete but a
lousy student]

humanitarian
⊕JJ

[athlete but really
a humanitarian]

(d)

COMPARE TEXT REGION

nonathlete
⊕ NN

[athletes took more classes than
nonathletes]

male ⊕ NN [athletes get concussions at a
higher rate than males]

man ⊕ NN [athletes require more carbohydrates
and protein than non-active men]

(e)

TIME TEXT REGION

[2016-08-01,
2016-08-31]

[olympics 2016 will
be held in august]

[2020-01-01,
2020-12-31]

[olympics will be
held in 2020]

[2024-01-01,
2024-12-31]

[olympics come to
paris in 2024]

(f)

NUMBER TEXT REGION

[15.0,trophy] [nadal increased his career haul
to 15 grand slam trophies]

[<=2.0,point] [nadal came within two points]
[%1.0-3.0,
percent]

[nadal is getting further
away from his goal of growing
revenues 1-3 percent]

(g)

Figure 1: Text regions from the C4-News collection [43] given
the query q = “williams wins olympic medal ” for (a) similarity
search ∼ (q) (b) GROUP △ (nadal ⊕person) (c) EXPAND ▽ (athlete ⊕nn)
(d) OUTLIER ⋫ (athlete ⊕nn) (e) COMPARE ◁ (athlete ⊕nn) (f) TIME
T (olympics ⊕misc) and (g) NUMBER N (nadal ⊕person) operators.

tabular representation contains text regions that are semantically,

syntactically, and contextually similar to the input query. With this

representation, the user can select horizontally a subset of rows

to further analyze by reading the documents (using the associated

metadata, i.e., document identifiers and publication dates) that con-

tain the text region. Moreover, the user can select vertically a subset

of entities which can then be further reasoned upon using addi-

tional context from the document collection. This is an important

search task for scholars in digital humanities [52] and computa-

tional journalists [19]. Terras et al. [52] outline that an important

task for scholars in humanities is to search for related entities and

compare their relationship (e.g., using their frequency) over time

(e.g., using document publication dates). Furthermore, Cohen et

al. [19], emphasize that the ability to extract related entities in

large document collections allows journalists to identify new story
patterns and narratives. In Figures 1b-1g, we show how knittir pro-
vides these capabilities through its query language that supports

the ability to categorize, contrast, and rank (using temporal and

numerical expressions) entities. In Figure 1b, the user applies the

group △ operator on nadal⊕person (where ⊕ associates the named

entity annotation person to nadal) to identify its related categories
from the document collection. In Figure 1c, the user expands the

category athlete⊕nn with additional entities using the expand ▽

KNITTIR: Syntactical Text Indexing for Analytics JCDL ’24, December 16–20, 2024, Hong Kong, China

operator. In Figure 1d, the user extracts phrases that do not usually

belong to the category athlete⊕nn using the outlier ⋫ operator.

In Figure 1e, the user compares the category athlete⊕nn with

other related entities in the document collection using the compare
◁ operator. In Figure 1f, the user extracts the temporal expressions

associated with the entity olympics⊕misc using the time t oper-

ator. In Figure 1g, the user extracts numerical values along with

their units related to the athlete nadal⊕person using the number
n operator. With knittir’s query language, a user can compose an-

alytics workflows in a manipulable manner that allows them to ex-

tract structured results at scale from millions of documents quickly.

2 KNITTIR

We now describe knittir in detail.

2.1 Syntactical Text Model
Text analytics requires similarity search that can be achieved in

three ways: bag-of-words, contextual, and syntactical modeling.

We consider each of these design choices next.

Bag-of-Words (BoW) Text Model assumes independence be-

tween occurrence of terms thereby modeling a document as a multi-

set of terms. The BoW text model forms the basis for the vector-

space model [36] and is the foundation of the term indexes [2, 6].

Similarity between query and documents is computed using the

scalar dot product between their vector representations. Two key

disadvantages of the BoW model are: contextual semantics are

loosely captured and to retrieve exact text regions requires scanning

documents. Approaches such as latent semantic indexing (LSI) [20]

can be leveraged to obtain implicit categories over groups of terms

for pseudo-relevant sets of documents. However, these approaches

can not scale as they rely on expensivematrix factorizationmethods.

Context-based TextModel uses positional information inword

sequences to determine its context. A word’s context is modeled

by a fixed-length window (i.e., n-grams or skip-grams). This text

model is leveraged in term indexes [2, 6, 26, 28] for proximity

and grep-like search capability. Vector indexes also use this ap-

proach [38, 41] to obtain dense representations for text. A key

limitation is that it models many word combinations which are

not syntactically connected and thus not meaningful for semantic

search. For example, in ‘Williams and Phelps expected to win 2
and 4 medals, respectively ’, the trigram ‘2 and 4 ’ is not useful
unless connected to the subjects of the sentence.

Syntax-based Text Model leverages parse trees obtained by

natural language processing (NLP) tools to determine relationships

(e.g., subject, object, or copula) between words in a sentence. Ad-

ditionally, we can obtain annotations about roles the words play

in a sentence via part-of-speech tags (e.g., nouns). Syntax-based

text models have been used in many NLP tasks such as word sense

disambiguation [53] and paraphrasing [14, 53] using contextual

semantics. Syntax-based text models allow the capability to de-

sign operators that offer text compositionality and manipulability.

Furthermore, syntax-based models allow us to keep only those

combinations of terms in sentences that are syntactically related.

For text analytics, we need to enable similarity search to re-

trieve text regions that are syntactically, semantically, and contex-

tually similar to queried word sequence. Furthermore, we need to

2-STITCH

Williams won two medals during the 2000 Olympics in Sydney
NNP VBD CD NNS IN DT CD NNPS IN NNP

PERSON NUMBER DATE MISC. LOC.

2.0

2000

1 2 3 4 5 6 7 8 9 10

NSUBJ

OBJ

OBL:DURING

NUMMOD

CASE

DET

NUMMOD

NMOD:IN

CASE

2-FRAGMENT

WEAVE

Figure 2: knittir text model for index design and query processing.

enable reasoning capabilities to organize entities into categories;

contrast entities; and rank entities using time and numbers. To do

so, we design knittir’s text model that leverages the annotated

text model [26] and the syntactical text model [14] for organiz-

ing annotations such as part-of-speech; named entities; resolved

temporal and numerical expressions; and dependency parse trees.

To describe knittir’s complete text model, we explain each of the

aforementioned annotations.

Semantic Annotations.We model four types of annotations to

model text semantics. First, we model part-of-speech annotations

that convey the roles words play in the syntactical structure of

the sentence (e.g., nouns, verbs, and adjectives). Second, we model

coarse-grained named entity annotations that identify persons, or-

ganizations, locations, temporal and numerical expressions in a

sentence. Third and fourth annotations, we model are resolved in-

terval representations corresponding to the temporal and numerical

expressions in text. Temporal and numerical expressions can be

mentioned in an implicit manner (e.g., tomorrow) which further

require their resolution with explicit mentions of time and numbers

present as part of the document metadata (e.g., publication date) or

other explicit mentions elsewhere in the document.

Syntactical Annotations. To model the text syntax, we use

dependency parse trees. Unlike, constituency parse trees derived

from context-free grammars, dependency parse trees do not provide

any phrasal-structures [32]. Instead, dependency parse provides us

with binary grammatical relationships between words in a sentence

(e.g., nominal subject, direct object, or adjectival modifier etc.) [32].

Moreover, due to the lack of any phrasal-structure, dependency

parse trees are amenable to free-word-order languages [32]. This

allows us to model important word dependencies independent of

their positional order (contrast this to context based text models for

proximity and grep-like search [2, 6, 26, 28] based on word-order).

This flexibility allows us to design an indexing infrastructure that

captures both text syntax and semantics in a concise manner.

KNITTIR Text Model. Let, D = {d1, d2, . . . , dN} denote a

document collection, where, each document d contains a sequence

of sentences: d = ⟨s1, s2, . . . , s|d|⟩. Also, each sentence, s, con-

sists of a sequence of words: s = ⟨w[1,1], w[2,2], . . . , w|s|,|s|⟩,
where, the words belong to the collection vocabulary, ΣV. We

build a text model consisting of annotation layers dL which im-

pose additional semantics to the contiguous word sequence it

annotates, dL = ⟨ℓ[i,j], . . . , ℓ[p,q]⟩ [26]. The word layer with

its annotation alphabet, ΣV, is the basis layer, dV. The annota-

tions are drawn from the annotator’s alphabet, ΣL. Annotation

alphabets for part-of-speech, coarse-grained named entities, tem-

poral, and numerical expressions are denoted by ΣP, ΣE, ΣT , and

ΣN , respectively. The syntactical text model [14] further allows

JCDL ’24, December 16–20, 2024, Hong Kong, China Thanh-Hi Anthony Vu and Dhruv Gupta

us to model non-contiguous relationships between words using

the dependency parse tree, where the directed binary relationships

(rel{i,j} or rel{h,d}) between the head and dependent terms (wi or

wh andwj orwd) belongs to ΣG. For example, in Figure 2 contains

Williams
nsubj←−−− won , where the directed binary relation is nsubj

(∈ ΣG) with won as its head (wh) and Williams as its dependent

(wd). Each annotation is formally modeled as [26]: ℓ ⊂ N×N×ΣL,

where N × N is represents the positional span on the basis layer

while the ΣL represents the annotation from its alphabet.

2.2 Analytics-Centric Search Framework
A central aspect for the user is the ease with which they can apply

analytical operators much like native database operators. To this

end, we reformulate the the traditional information retrieval (IR)

search framework of horizontal partitioned result set wherein docu-

ments are returned in response to queries as a vertical partitioned
result set. This analytics-centric search framework is described next.

An Analytics Workflow in knittir takes as input a query

consisting of a word sequence:

Query: q = ⟨w1, w2, . . . , w|q|⟩. (1)

Assuming that the query consists of a syntactically correct word

sequence, we can obtain annotation for the query much like the

documents in the collection. Thus, we can represent the query with

the same layers of annotations as with knittir’s text model that

includes its syntactical structure. knittir matches queries to text

regions in documents. A text region is defined as a contiguous

sequence of words contained (⊏) in a word layer of a document in

the collection [26]:

Text Region: w⟨i:j⟩ = ⟨wi, wi+1, . . . , wj⟩ ⊏ dV. (2)

A Vertically Partitioned Result Set refers to text regions

that are structured and aligned vertically based on the syntactical,

semantic, and contextual similarity with respect to the query. This

ensures that the text region aligned to the query contains words

that serve the same semantic function as in the query. Furthermore,

the aligned words are syntactically and contextually similar as well

with the words in the query. Formally, each tuple in the raw table

represents a text region that is matched corresponding to the query

operators applied to the queried word sequence:

Raw Table:
¯T =

⋃ (
doc-id, a1, a2, . . . , ak

)
. (3)

q w1 w2 . . . wk

doc-id a1 a2 . . . ak ak+1

r1 id1 a1
1

a2
1

. . . ak
1

ak+1
1

r2 id2 a1
2

a2
2

. . . ak
2

ak+1
2

.

.

.
.
.
.

.

.

.
.
.
.

...
.
.
.

.

.

.

rn idn a1n a2n . . . akn ak+1
n

(4)

The vertically partitioned result set above thus represents the

two-dimensional text as envisioned in [14]. In Equation 3, the num-

ber of attributes k for the structured representation of the text

regions varies based on the query operator applied. For instance, if

the similarity search operator is applied then the k = |q|, such that,

we retrieve semantically similar text regions corresponding to the

query. The rows of the raw table, r ∈ ¯T, correspond to the number

of matched text regions based on the operators applied on the query.

We use the term raw table to reflect that the rows correspond to

matches within the document collection. The tables generated by

knittir are in zero-normal form, as: r ⊂ 2Σ1 × 2Σ2 × . . . × 2Σk ,

where, Σ refers to annotation alphabet for attribute a. This im-

plies a cell in the raw table can potentially contain more than one

annotation element drawn from its alphabet.

Reasoning over Vertical Partitions. The vertical partitioned
result or the raw table

¯T can be further analyzed by allowing for

operators that reason over the context (text regions) using syn-

tactical and semantic annotations. Thus, we can augment the raw

table
¯T by additional vertical partitions or attributes (i.e., Ak+1

in

Equation 4) by leveraging selective syntactical relations to specific

semantic annotations.

2.3 Query Language
We now describe the key operators of knittir’s query language.

Similarity Search Operator (∼) allows the user to retrieve

similar text regions to the query based on syntactical, semantic,

and contextual similarity (see Figure 1a). The syntactical similarity

is processed by retrieving parts of the dependency parse tree corre-

sponding to the query from the document collection. The semantic

similarity is obtained by finding those words that occur with the

same role for part-of-speech or coarse-grained named entity an-

notation for constituent parts of the query parse tree. Contextual

similarity is arrived implicitly by combining syntactical and seman-

tic similarity such that we identify sentences that contain similar

words with same annotations and syntactical structure. Formally,

the semantics can be expressed as:

∼q =
⋃

r ∈ ¯T

�������������

∀(i, j, rel{i,j}) ∈ q∧ ∃w⟨i:j⟩ ⊏ dV

∧ rel{i,j} ⊏ dG

∧ ℓi ⊏ (dP ∨ dE)∧ ℓj ⊏ (dP ∨ dE)

∧
[
wi ⊕ ℓi ⊏ dV ⊕ (dP ∨ dE)∨

wj ⊕ ℓj ⊏ dV ⊕ (dP ∨ dE)
]

, (5)

where, the ⊕ implies the superimposition of the annotation layers

such that the respective annotations are matched. In Equation 5, the

∼ operator produces a set of rows that correspond to text regions in

the document collection, where the syntax of the query is matched.

When performing the match of the syntax, a semantic match is also

obtained such that a synonym substitution with same annotation

is retrieved as only one of the arguments of the binary dependency

relation needs to be contained.

Reasoning Operators provide the user the capability to group

together entities (or noun phrases) into semantically related groups

(e.g., Williams is an athlete), contrast them to other entities (e.g.,

chess players unlike athletes have more mental strain), or rank

them using temporal and numerical expressions (e.g., Williams par-

ticipated in the 2008 & 2012 Olympics). Entities (or noun phrases)

can be categorized, contrasted, or ranked using time and numbers

based on syntactical patterns contained within the collection. We

make this design choice so that knittir can leverage the domain

KNITTIR: Syntactical Text Indexing for Analytics JCDL ’24, December 16–20, 2024, Hong Kong, China

knowledge contained in the document collection. An alternative

design choice is to use external knowledge (dictionaries [55] or

KGs [13]). However, this restricts reasoning operators in knittir
(e.g., limited to Wikipedia entities and categories). knittir provides
three types of reasoning operators: categorize (as group △ and

expand ▽); contrast (as compare ◁ , and outlier ⋫); and rank (as

temporal t and numerical n).
Categorize (group △ & expand ▽). knittir provides two cate-

gorization operators: group and expand. The group operator allows

a user to determine categories for entities (or noun phrases) using

collection-based syntactical patterns (see Figure 1b). Whereas, the

expand operator, allows a user to expand a category to a list of

entities (or noun phrases) in the collection (see Figure 1c). Hearst

Patterns [31] (see Figure 3a) capture such relationships between

instances (hyponym or npi) and their categories (hypernym or npc).
A pre-defined syntactical pattern set Phearst defines grouping and

expansion rules for extraction of relevant noun phrases, entities, and

categories from the document collection. The group and expand op-

erators make use of the directed dependencies (i.e., nmod:including,
nmod:such_as, nmod:like, and nmod:as) or can reason by joining

nmod:of, cop, and nsubj dependencies [11, 24, 31, 45, 46, 48, 49].
Table 1 shows the pattern set Phearst. Formally, the group and

expand operators take as input relevant annotated cells correspond-

ing to part-of-speech or entity attributes (i.e., a = w ⊕ ℓ, where

ℓ ∈ {dP∨dE}) from the raw table
¯T and extract grouping categories

or expanded entity sets as augmentation for that row:

△ (w ⊕ ℓ) =

w⟨i:j⟩ ⊏ dV

���������������

∃p ∈ Phearst ∧ ∀(i, j, rel{i,j}) ∈ p

∧ rel{i,j} ⊏ dG

∧ ℓi ⊏ (dP ∨ dE)∧ ℓj ⊏ (dP ∨ dE)

∧
[
wi ⊕ ℓi ⊏ dV ⊕ (dP ∨ dE)∨

wj ⊕ ℓj ⊏ dV ⊕ (dP ∨ dE)
]

∧∃w̄ ⊕ ¯ℓ = w ⊕ ℓ

. (6)

In the above equation, the group operator expands an entity

present in a raw table cell using patterns in Phearst to match text

regions containing categories to the queried entity (or noun phrase).

Contrast (compare ◁ & outlier ⋫). The compare operator

allows users to compare entities conveyed in text using compara-

tive or superlative parts-of-speech. Whereas, the outlier operator

highlights implicit commonsense knowledge by extracting explicit

exceptions (outliers). We describe the contrastive operators next.

Compare (◁). Relationships between entities is often contrasted

using a finite set of adjectives [16]. Reasoning over such contrasting

relationships helps us provide comparative analytics over entities.

This is particularly useful for sport journalists or political scientists

when drawing comparisons between persons (see Figure 3b). To

support such analytics, the compare ◁ operator augments an entity

or noun phrase attribute with other entities using their comparative

relations. Specifically, the compare operator uses comparative and

superlative adjectives in addition to the join of nsubj, cop, and
obl:than dependency relations (see Figure 3b). Table 2 shows the

comparative relational patterns Pcompare from [16]. The seman-

tics for compare can be specified in a manner similar to Equation 6

with the Pcompare pattern set.

Williams is example of Olympian
NNP VBZ NN IN NNP

NSUBJ

COP

NMOD:OF

CASE

(a)

Williams is better than Graf
NNP VBZ JJR IN NNP

NSUBJ

COP

OBL:THAN

CASE

(b)

Williams won a medal in 2000
NNP VBD DT NN IN CD

NSUBJ

OBL:IN

OBJ

CASEDET

(c)

Williams won four medals
NNP VBD CD NNS

NSUBJ

OBJ

NUMMOD

(d)

Figure 3: Annotated text regions containing patterns for (a)
CATEGORIZATION (b) COMPARE (c) TEMPORAL and (d) NUMERICAL operators.

Table 1: Pattern set PHEARST for relationships between instances
(hyponym or wi⊕npi) and their categories (hypernym or wc⊕npc).
hearst pattern dependency pattern

wc⊕npc including wi⊕npi ⟨wc ⊕ npc, nmod:including,wi ⊕ npi ⟩
wc⊕npc such as wi⊕npi ⟨wc ⊕ npc, nmod:such_as,wi ⊕ npi ⟩
wc⊕npc like wi⊕npi ⟨wc ⊕ npc, nmod:like,wi ⊕ npi ⟩
wi⊕npi as wc⊕npc ⟨wc ⊕ npc, nmod:as,wi ⊕ npi ⟩
wi⊕npi [is ||was ||are ||were]wc⊕npc

⟨wc ⊕ npc, nsubj,wi ⊕ npi ⟩
⟨wc ⊕ npc, cop, is||was||are||were⟩

wi⊕npi [are ||is]

examples of wc⊕npc

⟨example, nmod:of,wc ⊕ npc ⟩
⟨example, cop, is||are⟩
⟨example, nsubj,wi ⊕ npi ⟩

Table 2: Pattern set PCOMPARE. Comparative or superlative part-of-
speech annotations such as jjr, jjs, rbr, and rbs are marked with •.

comparative pattern dependency pattern

nnh • than nnd
⟨wa ⊕ •, nsubj,wh ⊕ nnh ⟩
⟨wa ⊕ •, cop, is || was || are || were⟩
⟨wa ⊕ •, obl:than,wd ⊕ nnd ⟩

nnh • than nnd

⟨wa, nsubj, nnh ⟩
⟨wa, cop, is || was || are || were⟩
⟨wa, advmod,wb ⊕ •⟩
⟨wb, obl:than, nnd ⟩

Table 3: Pattern set PTIME. ner refers to person, org., or loc.
temporal pattern dependency pattern

wh ⊕ ner noun-phrase prep.wd ⊕ date ⟨wa ⊕ nna , nsubj ,wd ⊕ nerh ⟩
⟨wa ⊕ nna , nmod: prep. ,wd ⊕ dated ⟩

wh ⊕ ner verb-phrase prep.wd ⊕ date ⟨wa ⊕ nna , nsubj ,wd ⊕ nerh ⟩
⟨wa ⊕ nna , obl: prep. ,wd ⊕ dated ⟩

Outliers (⋫). Commonsense reasoning from large document

collections is challenging as implicit knowledge concerning enti-

ties and events is never made explicit in text. However, entities

or events that defy such commonsense or natural knowledge is

usually surprising and made explicit in text [42]. For instance, in

the sentence, “although, a doctor, Debra Thomas won a medal
in 1988 Olympics ”, we can identify the implicit knowledge that

doctors do not participate in Olympics. We provide the outlier
operator, to assist users in extracting text regions that contain such

peculiarities thereby highlighting the commonsense knowledge

(see Figure 1d). The outlier operator allows a user to expand the

category with phrases extracted from the document collection that

do not usually belong to the category [42]. The pattern set of de-

feasible statements [42, 51], Poutlier, consists of direct binary
relationships of conjunction or adverbial clause modifiers: conj:but,
advcl:although, advcl:albeit, advcl:despite, and advcl:if. Using
Poutlier, we can extract corresponding phrases and entities that

deviate from the expected. The semantics of the outlier can be

specified in a manner similar to Equation 6 with Poutlier.

JCDL ’24, December 16–20, 2024, Hong Kong, China Thanh-Hi Anthony Vu and Dhruv Gupta

Ranking (time t & number n). Temporal and numerical val-

ues are annotated as a cardinal value (cd) by the part-of-speech

annotator. These cardinal values can be further resolved to their

coarse-grained named entity types (e.g., time, date, or money) and
furthermore to precise intervals via additional annotators (e.g., tem-

poral taggers such as SUTime [18]). The operators t and n allow a

user to reason about temporal and numerical expressions in rela-

tion to the entities (or noun phrases) in the raw table (see Figure 1f

and 1g). This allows a user to rank (or sort) the augmented table for

identifying answers to several temporal and numerical relations

such as: after, before, soon, first, second, and last.

Temporal Reasoning Operator t . Temporal expressions are an-

notated as date, time, or duration entities and further resolved

to time intervals via temporal annotators. Moreover, temporal ex-

pressions are connected to either a verbal phrase or a noun phrase

through prepositions: from, in, during, since, until, and between.
Expressions connected to a verbal phrase are annotated with a

obl dependency relationships (see Figure 3c). While, expressions

connected to noun phrases are annotated with a nmod dependency

relationship [47]. To extract time intervals from the collection we

create a pattern set of such relations Ptime (see Table 3). The

semantics of the temporal reasoning operator t are:

t (w ⊕ ℓ) =

[b, e] ⊏ dT

���������������

∃p ∈ Ptime ∧ ∀(i, j, rel{i,j}) ∈ p

∧ rel{i,j} ⊏ dG

∧ ℓi ⊏ (dP ∨ dE)∧ ℓj ⊏ (dP ∨ dE)

∧
[
wi ⊕ ℓi ⊏ dV ⊕ (dP ∨ dE ∨ dT)∨

wj ⊕ ℓj ⊏ dV ⊕ (dP ∨ dE ∨ dT)
]

∧ ∃w̄ ⊕ ¯ℓ = w ⊕ ℓ

. (7)

In the equation above, for an entity (or noun phrase) in the raw

table, the temporal reasoning operator t extracts time intervals in

the collection using the patterns in Ptime.
Numerical Reasoning Operator n . Numerical expressions are clas-

sified by the coarse-grained named entity recognizer with money,
percent, number, or ordinal annotation. Like temporal expressions,

numerical expressions can also be resolved to intervals using addi-

tional annotators. However, unlike temporal expressions, numerical

values are often accompanied by units (e.g., two medals), which is

annotated as a nummod relationship by the dependency parser (see

Figure 3d). Moreover, also unlike temporal expressions, to extract

the numerical values and units related to an entity (or noun phrase)

requires reasoning over multiple triples in the dependency parse.

Concretely, the numerical reasoning operator applied to an entity

(or noun phrase) a = w ⊕ ℓ (i.e., n (w ⊕ ℓ)) maps to a set of nu-

merical intervals with units,

⋃ (
[b, e]; unit

)
, by reasoning over the

dependency parse tree of a sentence, where a = w ⊕ ℓ is its nomi-

nal subject (nsubj) and has path to a numerical expression (money,
percent, number, or ordinal) with its unit (related via nummod).

2.4 Index Design
We now describe five index design choices and discuss which one

can support similarity search and reasoning operators such that

they can be processed quickly.

Inverted Indexes over words work well for keyword-based

search. To use this design choice to support similarity search and

reasoning operators, inverted indexes over elements from the dif-

ferent annotation layers can be built [7, 26, 56]. However, with

only inverted indexes over individual annotation elements, we may

retrieve many false positives, e.g., for syntactical relationships be-

tween words, we need to additionally verify the matches using a

direct index that stores the complete annotated document [40]. The

shortcoming of combinations of annotated inverted indexes has

been evaluated before [26].

Graph Indexes seem a natural design choice for retrieval of the

parse tree corresponding to the query. Graph indexing techniques

have been employed successfully for search of semi-structured data

such as XML and JSON [33]. A graph index for the parse tree would

entail enumerating paths from the root of the dependency path tree

to the leaf. To support efficient query processing, paths of fixed

length can be enumerated and indexed [57]. Indeed, graph indexes

have been used for searching collections annotated for dependency

parse trees [55]. The authors index parse trees using an index de-

sign based on data guides. Specifically, their storage scheme is

implemented using a relational database. However, this approach

is ill-suited for knittir, as sentences that are similar may not neces-

sarily have same sequence of relations from the root node of the

dependency parse tree. This shortcoming is reflected in [55] as the

authors rely on external knowledge (i.e., word embeddings and

pre-computed dictionaries) to establish paraphrases for semantic

similarity. This is prohibitive in domain adaptability of the storage

scheme. Furthermore, for reasoning operators, we need the flexi-

bility of locating matches that combine the dependency parse tree

relationships with other annotation layers of the document. Thus,

path enumeration based design choice is too limited for knittir.
2-Stitch and 2-Fragment Indexes. Naïve element-wise in-

verted indexes for storing dependency parse trees are expensive

when performing query processing as further verification using

direct indexes is needed. On the other hand, graph indexing tech-

niques based on path enumeration are too brittle to support simi-

larity search. Between two extremes, we consider a combination of

two other design choices. We first consider 2-stitch and 2-fragment

indexes that store aligned and staggered combinations of words

from the basis layer and an additional annotation layer [26] (where 2

indicates the number of layers considered). 2-stitch and 2-fragment

indexes significantly reduce times for performing grep-like search
using word sequences and annotations. For instance, in the anno-

tated sentence in Figure 2, an example of 2-fragment is the aligned

combination of the word two and the coarse-grained named entity

number. An example of 2-stitch is the staggered combination of the

word during and the coarse-grained named entity date. However,
2-stitch and 2-fragment indexes are still insufficient for storage of

syntactical patterns that are necessary for similarity search. This is

because, just like with the inverted index design, we need to resort

to the direct index for ensuring the correct syntactical match for the

query (i.e., dependency relations between words and annotations).

Weave Indexes. All three design alternatives fail to provide us a

comprehensive storage scheme to support knittir’s query operators
as we have to resort to the direct index to verify either the syntax,

semantics, or the context of the matched text region. In order to re-

trieve matching text regions quickly, we require a feasible solution

KNITTIR: Syntactical Text Indexing for Analytics JCDL ’24, December 16–20, 2024, Hong Kong, China

that accommodates the syntax, semantics, and the context of a word

in the annotated text model. A key limiting factor in previous design

choices is the inability to store the syntactical information conveyed

by the dependency parse. The graph-based indexing approaches

(e.g., [55]) consider a rigid path enumeration based approach. While

2-stitch and 2-fragment based approach [26] ignores the syntactical

aspect completely by enumerating all possible combinations. As

highlighted in Section 2.1, dependency parse trees allow us to model

the syntax of a sentence as a collection of binary relationships. The

dependency parse in contrast to constituency parse does not rely on

a context-free grammar resulting in phrasal structure. Thus, we can

reduce the path enumeration to simple sets of binary relationships

between the words [14, 32]. Furthermore, we can combine this

with the 2-fragment based index design. That is, deriving binary

relationships in combination with a variable superimposition of

the finest or coarsest-granular semantics available for a word to

arrive at patterns that combine both the syntax and semantics in

the annotated text model (e.g., variable semantics superimposition

of person or nnp on Williams in Figure 2). Thus, knittir considers
a design choice of deriving sets of binary relationships that combine

both syntax and semantics from the dependency parse tree using

the holing process [14]. Based on this holing process, we create

weave indexes that record combinations of words and other aligned

annotations related by binary relationship obtained from the de-

pendency parse tree. The weave indexes also help us consider only

syntactically related word and annotation combinations whereas

2-stitch indexes consider all n-gram and annotation combinations;

many of which many not be syntactically relevant. Based on the

weave index, we can retrieve words that are relevant for syntactical

and semantic similarity based on the part-of-speech role, named

entity, or other annotation in addition to their correct syntactical

relationship. For example, to index the dependency relation pattern

nmod:in in Figure 2, we consider the 2-fragments Olympics⊕misc.
and Sydney⊕loc.) by superimposing the basis layer and coarse-

grained named entity layer. After applying the holing process, we

get two weave indexing patterns: Olympics⊕misc. nmod:in−−−−→ loc.

and misc. nmod:in−−−−→ Sydney⊕loc. . For each indexing pattern, we

record the holed word (e.g., Sydney for the first weave pattern),

its sentence identifier, and its positional span in the document. The

holed word is dictionary encoded and the posting list payloads are

compressed using Patched Frame of Reference [5, 59].

Aggregate Weave Indexes. Weave indexes help us support

similarity search operator ∼ in a scalable manner. Weave indexes

can also support categorical (group △ and expand ▽), contrastive
(compare ◁ and outlier ⋫), and rank (time t and number n) rea-
soning operators. However, using only weave indexes can slow

down the processing of reasoning operators as they require lookup

of multiple syntactical patterns in their pattern sets P•. To speed

up the processing of reasoning knittir queries, we create aggregate
weave indexes that record unified reasoning results over multiple

syntactical patterns. For example, in Table 2 for the compare opera-

tor, we can aggregate the result of the multiple dependency parse

triples into a unified pattern: ⟨nnh, compare, nnd⟩. Similar to the

weave indexes, we apply the holing process to index this aggre-

gated pattern with the holed word, its sentence identifier, and its

positional span as part of the payload of the postings list.

Input: query sentence (s).
Output: matched text regions within sentences (L).

1: procedure SimilaritySearch(s)
2: R← parse(s) ◁ dependency parse of s

3: map← ∅ ◁ initialize key-value map
4: for w ∈ s do ◁ word in S
5: for (wh ⊕ ℓh, rel,wd ⊕ ℓd) ∈ R do ◁ dependency in relations
6: if wh = w then ◁ dependency head equals word
7: searchKey← (ℓh, rel,wd ⊕ ℓd) ◁ omit head
8: L← retrieve values for searchKey
9: map.put(wh ⊕ ℓh, L)
10: else if wd = w then ◁ dependency dependent equals word
11: searchKey← (wh ⊕ ℓh, rel, ℓd) ◁ omit dependent
12: L← retrieve values for searchKey
13: map.put(wd ⊕ ℓd, L)

14: L←retrieve list of value for map[0]
15: L ′ ← ∅ ◁ temporary variable
16: for (i← 1; i < map.size(); i ++) do

17: L ′ ← retrieve list of value for map[i]
18: L← Intersect L & L’ for matches within a sentence
19: return L

Algorithm 1: Similarity Search Operator

2.5 Query Processing
An Analytics Workflow in knittir starts with a user input query

consisting of a word sequence, q = ⟨w1, w2, . . . , w|q|⟩. This ini-
tial query is first processed for the same annotation layers as the

documents (see Figure 2). With the annotated query, we can retrieve

similar text regions, which are then vertically partitioned into a raw

table. A user can then further perform reasoning operations (e.g.,

group △) on the structured table by retrieving further attributes

from the annotated document collection for analytics (e.g., entity

categories). We next explain how the query processing for the se-

mantic similarity and reasoning operators is done efficiently with

the help of weave and aggregated weave indexes.

The Similarity Search operator (∼) is processed by knittir us-
ing combinations of semantic, syntactic, and contextual similarity.

To retrieve semantically similar text regions, knittir superimposes

the most fine granular annotation corresponding to the word. For

instance, in Figure 2, the query term Williams can refer to either a

proper noun (nnp) as a part-of-speech or a person as coarse-grained
named entity. To process the term Williams, we choose here the
most fine-granular annotation person resulting in the 2-fragment

Williams⊕person. The syntactical similarity is obtained by com-

bining the 2-fragments with binary dependency parse relationships

(e.g., in Figure 2 we have, Williams⊕person nsubj←−−− won⊕vbd). The
contextual similarity is obtained implicitly by combining semantic

and syntactical similarity. Contextual similarity identifies words in

sentences that provide the same semantics and syntax as those re-

ferred to by the 2-fragments and also the dependency parse relation-
ships (e.g., claimed in Williams⊕person nsubj←−−− claimed⊕vbd pro-

vides the same semantics and syntax as won in Figure 2). To process

the similarity search operator only the weave indexes are required.

The query is processed (see Algorithm 1) by enumerating all the

weave patterns from the input query. The is done by selecting all the

binary dependency parse relations and alternatively omitting the

words from the basis layer. Thus, each dependency parse relation

can enumerate two weave patterns (e.g., for the relation nsubj in
Figure 2, twoweave patterns are generated person

nsubj←−−− won⊕vbd

JCDL ’24, December 16–20, 2024, Hong Kong, China Thanh-Hi Anthony Vu and Dhruv Gupta

and Williams⊕person nsubj←−−−vbd). The intersection of the weave

patterns that lie within sentence boundaries provides us matches

for the similarity search operator. The text regions retrieved as

part of the similarity search operator are vertically partitioned into

tables using the substitutions obtained as part of the weave patterns.

To vertically partition the text regions, a table is instantiated equal

to the query length. The cell values for each row then corresponds

to the words that were retrieved as part of the weave patterns that

locate the similarity match for the query.

Reasoning Operators retrieve additional attributes for entities
(or noun phrases) in the raw table generated by the similarity search

operator. Reasoning operators, i.e., (group △ and expand ▽), con-
trastive (compare ◁ and outlier ⋫), and rank (time t and number
n) correspond to those that we have defined as part of our query

language (see Section 2.3). These operators are readily resolvable

by looking up the expansions from the aggregated weave indexes.

3 Evaluation
We now describe the setup and results of our experiments.

Annotated Document Collections.We annotated and indexed

three large document collections with knittir. The first and the

smallest collection, consists of twenty years’ (1987-2007) worth

of news articles available as the New York Times Annotated Cor-

pora [9]. The second collection is the English Wikipedia [3] which

consists of encyclopedic articles concerning real-world entities and

events. The third and final collection is the news-centric subset of

the cleaned English Common Crawl [1] available as C4-News [43].

We processed all collections with the Stanford CoreNLP suite of

semantic annotators [37]. In particular, we annotated the docu-

ments for part-of-speech; coarse-grained named entities; resolved

temporal and numerical expressions; and enhanced dependency

parse trees. Collection statistics are shown in Table 4.

Implementation and Indexes. The implementation of knittir
was carried out from scratch in Java. The annotation of the docu-

ment collections and their indexing is carried out in a distributed

manner over our Hadoop cluster of twenty five machines. Each

machine is equipped with at least an Intel Xeon CPU with 16 cores

clocked at 2.20 GHz and at least of 128 GB of RAM. We index de-

pendency parse triples for sentence length up to 100 words. This is

because sentences longer than this limit are not grammatically cor-

rect and correspond to lists, tables, code excerpts or other metadata

elements that may have been omitted during boilerplate removal

by the collection provider [10]. The indexes are stored in HBase,

a distributed key-values store, running on our cluster. Index sizes

and their build times are shown in Table 5 and 6, respectively.

Query Testbed. To evaluate the efficiency of knittir for analyt-
ical tasks, we construct a testbed of sentences describing important

events from “The New York Times - On This Day" portal [8]. The

testbed sentences are then used to start the analytics workflow

by identifying similar sentences in the document collection and

subsequently to apply the reasoning operators. An example sen-

tence is: "The Summer Olympics opened in Sydney, Australia. "
(quoted from [8]). In total, we have 4,875 sentences in our testbed.

Baselines. As a naïve baseline (scan), we first observe the time

taken to scan the document collections in a distributed manner

over our Hadoop cluster. This gives a good estimate of how the in-

dexes of the system or the baseline compares to a simple distributed

Table 4: Raw collection sizes and their annotation statistics. The
statistic for dependency parse corresponds to the number of triples.

size (gb) #docs #word #ne #time #num #parse

nyt 3.06 1.86 M 1.06 B 107.77 M 15.41 M 21.72 M 1.03 B
en-wiki 34.44 6.34 M 3.81 B 626.27 M 150.89 M 115.14 M 3.62 B
c4-news 14.38 13.81 M 6.14 B 572.60 M 85.18 M 113.77 M 6.02 B

Table 5: Index sizes for the document collections.
index type nyt en-wiki c4-news

word 6.7 GB 21.1 GB 37.7 GB
annotation 1.7 GB 5.3 GB 10.7 GB
fragment 9.5 GB 25.8 GB 40.6 GB
stitch 179.8 GB 374.9 GB 2.2 TB

weave 114.7 GB 329.1 GB 805.8 GB
aggregated weave 142.4 GB 582.1 GB 1.0 TB

direct 25.1 GB 96.4 GB 143.0 GB

Table 6: Index build times (hours:minutes:seconds:milliseconds).
index type nyt en-wiki c4-news

word 00:06:07:614 00:44:29:830 00:32:47:873
annotation 00:05:40:049 01:00:21:072 00:27:41:374
fragment 00:06:55:290 01:03:02:463 00:37:11:780
stitch 03:10:13:657 04:43:16:730 09:24:44:724

weave 00:16:12:800 11:47:28:081 2:28:41:297
aggregated weave 00:22:59:482 13:30:17:999 5:26:44:965

direct 00:22:47:283 00:36:32:570 00:32:25:654

scan. The central operator for retrieval of contextually, syntacti-

cally, and semantically similar sentences is the similarity search ∼

operator. We compare the the processing of ∼ operator of knittir
with three baselines: wand, stich, and fast. These baselines are
aligned with the design choices discussed in Section 2.4. Concretely,

the first baseline, wand, processes the ∼ operator contextually by

locating text regions using inverted indexes over the word and

annotation layers. To further verify that the retrieved text regions

match the syntactical and semantic similarity, we create a direct

index where the complete representation of the document with

all of its annotation layers are stored. Thus, for locating portion

of a weave, Williams⊕person nsubj←−−− won⊕vbd , wand computes:

π1 (person �*? won), where �*? matches all text regions lazily (i.e.,

shortest possible text region match) that contain combinations of a

person in the coarse named entity layer and won in the word layer

(while respecting the weave nodes positional order) and
π1 subse-

quently projects them to lie within a sentence. The second baseline,

stich, corresponds to instantiating 2-stitch indexes that record stag-

gered combinations of words and annotations thus speeding the

spotting of text regions. Similar to wand, stich can process the ∼

operator contextually, while it relies on the direct index for verify-

ing the syntactical and semantic similarity. The third baseline, fast,
corresponds to instantiating the 2-fragment indexes in addition

to the 2-stitch index to help resolve semantic similarity. Thus, for

locating portion of a weave, Williams⊕person nsubj←−−− won⊕vbd ,
fast computes (Williams ⊕ person←− won) using the combination

of 2-stitch and 2-fragment indexes. The syntactical similarity, just

like wand and stich, is verified using the direct index. We further

evaluate the efficiency of creating aggregated weave indexes for
processing reasoning operators when compared to processing the

same reasoning operator using the weave indexes. A summary of

which indexes the baselines and our systems use is given in Table 7.

KNITTIR: Syntactical Text Indexing for Analytics JCDL ’24, December 16–20, 2024, Hong Kong, China

Table 7: Indexes used by the baselines.
system n-gram

indexes

annotation

indexes

stitch

index

fragment

index

direct

index

wand • • × × •
stich × × • × •
fast × × • • •

Table 8: Runtimes in seconds for a distributed scan.
nyt en-wiki c4-news

scan 74 321 283

Table 9: Query processing runtimes (in seconds) for cold caches to
process the similarity search operator ∼ .

system nyt en-wiki c4-news

wand 294.85 ± 112.81 1420.83 ± 602.59 3008.44 ± 1347.91
stich 30.94 ± 30.85 136.22 ± 279.12 276.85 ± 208.91
fast 48.73 ± 41.70 195.75 ± 246.81 351.45 ± 352.73
weave 6.50 ± 7.30 24.55 ± 32.69 75.14 ± 86.11

Table 10: End-to-end runtimes (in seconds) for cold caches to process
the similarity search operator ∼ .

system nyt en-wiki c4-news

wand 303.50 ± 111.09 1494.22 ± 732.40 2898.66 ± 1272.97
stich 34.52 ± 35.17 212.88 ± 665.32 302.80 ± 248.81
fast 51.26 ± 45.91 261.76 ± 558.25 380.41 ± 380.07
weave 6.21 ± 7.25 25.07 ± 32.85 75.78 ± 86.58

Setup.We evaluate the systems for the time it takes to process

each of the operators in an analytics workflow. To do so, we sample

100 queries to initialize the analytics workflow. First, we measure

the runtime for the systems to process the similarity search operator

∼ . Second, we measure the time to execute the reasoning operators

using the weave indexes and the aggregated weave indexes for a
sample of 100 unique entities in the initial sample of 100 queries.

We evaluate each query three times to measure the runtimes in

cold-caches, which are simulated by shuffling the query sample

in between rounds. As analytics-centric tasks are complete recall-

oriented, we retrieve complete results sets for all the baselines and

systems (unlike nearest-neighbor search in vector-based indexes).

Results for Distributed Scan are shown in Table 8. As can be

seen, the results for the collections range in the order of fewminutes,

with Wikipedia taking the longest. This can be attributed to the

observation the Wikipedia documents on average are longer as

they contain more words as compared to the other two collections.

Results for Similarity Search operator ∼ are shown in Ta-

bles 9 and 10. To process the similarity search operator ∼ , all the

systems annotate the query, process the query, and generate the

raw table. The first set of results (see Table 9) show the time taken

to annotate and process a query without generating the raw table,

which requires additional consultations from the direct index for

the three baselines. While, the second set of results (see Table 10),

show the complete end-to-end runtime results. Overall, comparing

the results in Table 9 and 10, we observe that for the three baselines

(i.e., wand, stich, and fast) we incur additional time for material-

izing the raw table by looking up the synonyms for the results in

the direct index. Concretely, we see that for wand on average 41.02

seconds need to be spent on materializing the table for nyt and

en-wiki. For, c4-news in the case of wand, due to the high standard

deviation in query processing in a distributed setting takes more

time than the end-to-end runtimes. While, for stitch and fast, we
see an average of additional 35.40 and 32.50 seconds being spent on

Table 11: End-to-end runtimes (in seconds) for reasoning tasks.
runtime results for GROUP operator △ .

system nyt en-wiki c4-news

weave 12.57 ± 9.93 51.18 ± 27.59 98.11 ± 45.36
aggregate-weave 0.09 ± 0.19 0.84 ± 1.01 0.51 ± 0.98

runtime results for EXPAND operator ▽ .

system nyt en-wiki c4-news

weave 2.04 ± 5.30 4.60 ± 9.30 8.28 ± 13.97
aggregate-weave 0.06 ± 0.14 0.61 ± 0.72 0.38 ± 0.56

runtime results for OUTLIER operator ⋫ .

system nyt en-wiki c4-news

weave 0.01 ± 0.03 0.01 ± 0.00 0.03 ± 0.02
aggregate-weave 0.01 ± 0.04 0.02 ± 0.01 0.02 ± 0.03

runtime results for COMPARE operator ◁ .

system nyt en-wiki c4-news

weave 416.30 ± 740.83 1513.89 ± 2219.84 —
aggregate-weave 0.01 ± 0.02 0.04 ± 0.04 0.04 ± 0.04

runtime results for TEMPORAL operator t.

system nyt en-wiki c4-news

weave 69.41 ± 116.18 531.24 ± 989.01 961.43 ± 1192.36
aggregate-weave 0.01 ± 0.02 0.07 ± 0.07 0.05 ± 0.07

runtime results for NUMERICAL operator n.

system nyt en-wiki c4-news

weave 672.52 ± 752.27 2768.87 ± 3365.56 —
aggregate-weave 0.01 ± 0.03 0.04 ± 0.05 0.05 ± 0.11

materializing the table over the three collections. For our system

that utilizes weave indexes, there is no sizeable difference between

the query processing and the end-to-end runtimes, as knittir can
materialize the raw table by looking up the synonyms stored in the

posting lists itself without consulting the direct index.

We now discuss the speedup obtained by utilizingweave indexes
over the three baselines for processing the similarity search operator

∼ . First, we consider the speedup over wand, which performs

similarity search using indexes over words and annotations. We

observe that weave indexes provide speedups in the range of 38-

60× compared to wand over the three collections. This significant

speedup can be attributed to the fact that a substantial amount of

time is spent computing the �*? match using individual word and

annotation positions. Whereas, the weave indexes do not require

such a computation. Second, we consider the speedup over stich,
where we pre-compute the staggered combinations of words and

annotations. We observe that weave indexes provide speedups in
the range of 4-9× over stich. This speedup can be attributed to

the observation that despite computing the contextual similarity

quickly using the 2-stitches, additional time is required to compute

the semantic (e.g., Williams⊕person) and syntactical similarity

(e.g., Williams
nsubj←−−− won) using the direct index. Whereas, weave

indexes can compute these similarities without the use of the direct

index. Third and finally, we consider the speedups over fast where
in addition to the 2-stitch indexes we instantiate 2-fragment indexes

that help us quickly compute semantic similarity without the use

of direct index. In this case, we observe that weave indexes provide
us with a speedup in the range of 5-10×. Here, we also observe

that utilizing 2-fragment indexes over the direct index slows down

the overall query processing. This is because for many queries

verifying the results using the direct index for a smaller result set is

JCDL ’24, December 16–20, 2024, Hong Kong, China Thanh-Hi Anthony Vu and Dhruv Gupta

faster than consulting the 2-fragment index whose posting lists can

span potentially more documents. Thus, we observe that overall

weave indexes provide us with speedups in the range of 4-60× in

comparison to the three baselines: wand, stich, and fast.
Results forReasoningOperators are shown in Table 11, where

we report the performance of six reasoning tasks using weave and
aggregated weave indexes. First, for the categorization operators,

△ and ▽ , we observe that the aggregated weave indexes provide
an improvement in the ranges of 61-192× and 8-34×, respectively
over weave indexes. This speedup can be attributed to the readily

summarized triples containing generalizations being stored in the

aggregated weave indexes as compared to performing a disjunc-

tive query over pattern sets to obtain the same result set using

weave indexes. Moreover, the speedup of ▽ is less than △ because

the aggregated lists for the generalization pattern are longer. Sec-

ond, for the contrastive operators, ⋫ and ◁ , we observe that the

aggregated weave indexes provide speedups in the ranges of 1-2×
and 38K- 42K×, respectively over theweave indexes. For the outlier
reasoning operator ⋫ , the performance of aggregated weave and
weave indexes are similar as they require the retrieval of direct

binary relationship and furthermore are rare in occurrence which

results in shorter posting lists. Whereas, for the compare reasoning

operator ◁ , we obtain a massive improvement as they can often

involve reasoning across two to three dependency parse triples. Due

to this, the runtimes for resolving the comparative reasoning oper-

ator using the weave baseline for c4-news becomes prohibitively

expensive at times exceeding 10 hours to resolve hard queries (e.g.,

africa⊕loc.). Thus, we can obtain the relative speedup by compar-

ing against the scan baseline — 7K×. Third and finally, for the rank-

ing operators t and n operators we see improvements in the ranges

of 7K-19K× and 67K-69K×, respectively over theweave indexes. Sim-

ilar to the contrastive operators, due to reasoning involvingmultiple

dependency parse triples, we see large improvements between the

aggregated weave and weave indexes. In particular, the improve-

ments in numerical reasoning are much larger as the reasoning

can often involve more than three hops amongst the dependency

parse triples. Thus, like with the comparative reasoning operator,

resolving the numerical reasoning operator using the weave in-
dexes becomes infeasible for the largest c4-news collection. For this
case, we can compare the relative speedup with respect to the scan

baseline — 6K×. Overall, apart from the outlier reasoning operator,

we see impressive speedups in the range of 8-69K× across the five re-

maining reasoning operators using the aggregated weave indexes.

4 Related Work
We have positioned relevant prior-art at appropriate points of dis-

cussion in this work.We now describe other related work in relation

to search over annotated collections. However, all these approaches

can be contrasted to knittir along the following three aspects. First,
they do not provide a structured query language that provides sim-

ilarity search over word sequences or operators for reasoning with

noun phrases, named entities, temporal and numerical expressions.

Second, they do not provide a presentation that generates vertically

partitioned results sets frommultiple text regions spread across mul-

tiple documents. Third and finally, all these approaches do not scale

to large document collections consisting of millions of documents.

Inverted Indexing for Annotated Document Collections.
Indicative works in this direction are [13, 17, 23, 26, 27, 29, 30, 58].

Some of the earliest works relied on indexing annotated documents

by storing context windows of part-of-speech around a word [17] or

the context around named entities [13]. The uima framework [23]

allows for declarative querying of annotated document collections.

The meta framework allows text indexing and analysis using topic

models [58]. The samtla [29, 30] search system is specifically de-

signed for search tasks in digital humanities. samtla’s data model

builds upon statistical language models and its storage scheme is im-

plemented using suffix trees. samtla allows users to further access

named entity annotations for the retrieved documents and compare

documents using edit distance. More recent works, provide grep-
like search over annotated documents [26] and can also structure an-

notated text into deduplicated tables for a user-defined schema [27].

Graph Indexing for Annotated Document Collections. Rep-
resentative works for modeling search over annotated document

collections by means of graph-based models are [15, 22, 33, 50, 55].

Naïvely, graph-based modeling and search for annotated docu-

ments can be done using XML-based XPath query language [33].

The authors in [55] perform XPath based querying that represents

dependency parse of sentences as trees and leverages external para-

phrase dictionaries to enable similarity search. This is similar in

vein to the work by [15], which relies on inverted indexing of parse

trees obtained by statistical parsing techniques. Alternatively, [22]

models the dependency parse trees as graphs and provide search us-

ing a B-Tree based implementation. All these approaches, however,

disregard the flexibility that dependency parse trees provide and

choose to insteadmodel them as trees. Disregarding parse trees, [50]

provide traditional search and ranking at document-level by model-

ing connections between words, entities, and dates as graphs [50].

Indexing Dense Neural Representations. Using text alone,
deep learning models [21, 38, 41] can learn dense representations

which are then amenable for similarity search. Recently, [54] at-

tempt to resolve reasoning tasks that leverages these dense repre-

sentations. However, as discussed in Section 1, vector-based indexes

provide limited recall. Furthermore, these dense representations

have severe shortcomings in handling temporal and numerical

expressions [44] that are central to analytical and reasoning tasks.

5 Conclusion
We described the building blocks for an indexing framework that

enables capabilities for transparent, composable, and scalable text

analytics. To that end, first we described an analytics-centric search

framework that relies on a vertical partitioned result set. Second,

we described operators that can retrieve similar text regions and

perform reasoning on entity categorization, comparison, and rank-

ing (using temporal and numerical expressions) much like native

database operators. Third and finally, we described the design of

an indexing infrastructure consisting of weave and aggregated

weave indexes. Results show that knittir provides up to 60× fac-

tor improvement for retrieval of similar text regions over millions

of documents. Furthermore, the reasoning operators can provide

augmentations for an entity in the vertically partitioned result set

in milliseconds. With knittir, scholars in digital humanities, so-

cial scientists, and computational journalists can simplify many of

complex analytical tasks over large document collections.

KNITTIR: Syntactical Text Indexing for Analytics JCDL ’24, December 16–20, 2024, Hong Kong, China

References

[1] Common Crawl.

https://commoncrawl.org/the-data/.

Accessed: 2024-07-01

[2] ElasticSearch.

https://elastic.co/.

Accessed: 2024-07-01

[3] English Wikipedia.

https://www.wikipedia.org/.

Accessed: 2024-07-01

[4] FAISS.

https://github.com/facebookresearch/faiss.

Accessed: 2024-07-01

[5] JavaFastPFOR: A Simple Integer Compression Library in Java.

https://github.com/lemire/JavaFastPFOR.

Accessed: 2024-07-01

[6] Lucene.

https://lucene.apache.org/.

Accessed: 2024-07-01

[7] Neo4J: The Use of Indexes.

https://neo4j.com/docs/cypher-manual/current/query-tuning/indexes/.

Accessed: 2024-07-01

[8] The New York Times — On This Day.

https://learning.blogs.nytimes.com/on-this-day/.

Accessed: 2024-07-01

[9] The New York Times Annotated Corpus.

https://catalog.ldc.upenn.edu/LDC2008T19.

Accessed: 2024-07-01

[10] Understanding Memory and Time Usage.

https://stanfordnlp.github.io/CoreNLP/memory-time.html.

Accessed: 2024-07-01

[11] Ahmad Issa Alaa Aldine, Mounira Harzallah, Giuseppe Berio, Nicolas Béchet, and

Ahmad Faour. 2018. Redefining Hearst Patterns by using Dependency Relations.

In Proceedings of the 10th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management, IC3K 2018, Volume 2: KEOD,
Seville, Spain, September 18-20, 2018, David Aveiro, Jan L. G. Dietz, and Joaquim

Filipe (Eds.). SciTePress, 146–153. https://doi.org/10.5220/0006962201460153

[12] Martin Aumüller and Matteo Ceccarello. 2021. The role of local dimensionality

measures in benchmarking nearest neighbor search. Inf. Syst. 101 (2021), 101807.
https://doi.org/10.1016/j.is.2021.101807

[13] Hannah Bast and Björn Buchhold. 2013. An index for efficient semantic full-text

search. In 22nd ACM International Conference on Information and Knowledge
Management, CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013.
369–378. https://doi.org/10.1145/2505515.2505689

[14] Chris Biemann and Martin Riedl. 2013. Text: now in 2D! A framework for

lexical expansion with contextual similarity. J. Lang. Model. 1, 1 (2013), 55–95.
https://doi.org/10.15398/jlm.v1i1.60

[15] Steven Bird, Yi Chen, Susan B. Davidson, Haejoong Lee, and Yifeng Zheng. 2006.

Designing and Evaluating an XPath Dialect for Linguistic Queries. In Proceedings
of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8 April
2006, Atlanta, GA, USA, Ling Liu, Andreas Reuter, Kyu-YoungWhang, and Jianjun

Zhang (Eds.). IEEE Computer Society, 52. https://doi.org/10.1109/ICDE.2006.48

[16] Alexander Bondarenko, Pavel Braslavski, Michael Völske, Rami Aly, Maik Fröbe,

Alexander Panchenko, Chris Biemann, Benno Stein, and Matthias Hagen. 2020.

Comparative Web Search Questions. In WSDM ’20: The Thirteenth ACM Interna-
tional Conference on Web Search and Data Mining, Houston, TX, USA, February
3-7, 2020, James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (Eds.).

ACM, 52–60. https://doi.org/10.1145/3336191.3371848

[17] Michael J. Cafarella and Oren Etzioni. 2005. A search engine for natural language

applications. In Proceedings of the 14th international conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14, 2005. 442–452. https://doi.org/10.

1145/1060745.1060811

[18] Angel X. Chang and Christopher D. Manning. 2012. SUTime: A library for

recognizing and normalizing time expressions. In Proceedings of the Eighth Inter-
national Conference on Language Resources and Evaluation, LREC 2012, Istanbul,
Turkey, May 23-25, 2012, Nicoletta Calzolari, Khalid Choukri, Thierry Declerck,

Mehmet Ugur Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios

Piperidis (Eds.). European Language Resources Association (ELRA), 3735–3740.

http://www.lrec-conf.org/proceedings/lrec2012/summaries/284.html

[19] Sarah Cohen, James T. Hamilton, and Fred Turner. 2011. Computational journal-

ism. Commun. ACM 54, 10 (2011), 66–71. https://doi.org/10.1145/2001269.2001288

[20] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,

and Richard A. Harshman. 1990. Indexing by Latent Semantic Analysis. J. Am.
Soc. Inf. Sci. 41, 6 (1990), 391–407.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-

tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[22] T. Krause et al. 2016. graphANNIS: A Fast Query Engine for Deeply Annotated

Linguistic Corpora. Corpus Linguistic Software Tools 31, 1 (2016), 1–25.
[23] David Ferrucci and Adam Lally. 2004. UIMA: An Architectural Approach

to Unstructured Information Processing in the Corporate Research Environ-

ment. Nat. Lang. Eng. 10, 3-4 (Sept. 2004), 327–348. https://doi.org/10.1017/

S1351324904003523

[24] Maayan Geffet and Ido Dagan. 2005. The Distributional Inclusion Hypotheses

and Lexical Entailment. In ACL 2005, 43rd Annual Meeting of the Association
for Computational Linguistics, Proceedings of the Conference, 25-30 June 2005,
University of Michigan, USA, Kevin Knight, Hwee Tou Ng, and Kemal Oflazer

(Eds.). The Association for Computer Linguistics, 107–114. https://doi.org/10.

3115/1219840.1219854

[25] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and

Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector

Quantization. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research, Vol. 119). PMLR, 3887–3896. http://proceedings.mlr.press/

v119/guo20h.html

[26] Dhruv Gupta and Klaus Berberich. 2018. GYANI: An Indexing Infrastructure

for Knowledge-Centric Tasks. In Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh

Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk

Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM,

487–496. https://doi.org/10.1145/3269206.3271745

[27] Dhruv Gupta and Klaus Berberich. 2019. JIGSAW: Structuring Text into Tables.

In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Infor-
mation Retrieval, ICTIR 2019, Santa Clara, CA, USA, October 2-5, 2019, Yi Fang,
Yi Zhang, James Allan, Krisztian Balog, Ben Carterette, and Jiafeng Guo (Eds.).

ACM, 237–244. https://doi.org/10.1145/3341981.3344228

[28] Dhruv Gupta and Klaus Berberich. 2020. Optimizing Hyper-Phrase Queries.

In ICTIR ’20: The 2020 ACM SIGIR International Conference on the Theory of
Information Retrieval, Virtual Event, Norway, September 14-17, 2020, Krisztian
Balog, Vinay Setty, Christina Lioma, Yiqun Liu, Min Zhang, and Klaus Berberich

(Eds.). ACM, 41–48. https://doi.org/10.1145/3409256.3409827

[29] Martyn Harris, Mark Levene, Dell Zhang, and Dan Levene. 2014. The anatomy of

a search and mining system for digital humanities. In IEEE/ACM Joint Conference
on Digital Libraries, JCDL 2014, London, United Kingdom, September 8-12, 2014.
IEEE Computer Society, 165–168. https://doi.org/10.1109/JCDL.2014.6970163

[30] Martyn Harris, Mark Levene, Dell Zhang, and Dan Levene. 2016. The Anatomy

of a Search and Mining System for Digital Archives. CoRR abs/1603.07150 (2016).

arXiv:1603.07150 http://arxiv.org/abs/1603.07150

[31] Marti A. Hearst. 1992. Automatic Acquisition of Hyponyms from Large Text

Corpora. In 14th International Conference on Computational Linguistics, COLING
1992, Nantes, France, August 23-28, 1992. 539–545. https://aclanthology.org/C92-

2082/

[32] Dan Jurafsky and James H. Martin. 2009. Speech and language processing: an
introduction to natural language processing, computational linguistics, and speech
recognition, 2nd Edition. Prentice Hall, Pearson Education International. https:

//www.worldcat.org/oclc/315913020

[33] Mounia Lalmas. 2009. XML Retrieval. Morgan & Claypool Publishers. https:

//doi.org/10.2200/S00203ED1V01Y200907ICR007

[34] Rui Liu, Dana McKay, and George Buchanan. 2021. Humanities Scholars and

Digital Humanities Projects: Practice Barriers in Tools Usage. In Linking The-
ory and Practice of Digital Libraries - 25th International Conference on Theory
and Practice of Digital Libraries, TPDL 2021, Virtual Event, September 13-17,
2021, Proceedings (Lecture Notes in Computer Science, Vol. 12866), Gerd Berget,

Mark Michael Hall, Daniel Brenn, and Sanna Kumpulainen (Eds.). Springer, 215–

226. https://doi.org/10.1007/978-3-030-86324-1_25

[35] Shuran Liu and Jun Wang. 2020. How to Organize Digital Tools to Help Scholars

in Digital Humanities Research?. In JCDL ’20: Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries in 2020, Virtual Event, China, August 1-5, 2020,
Ruhua Huang, DanWu, Gary Marchionini, Daqing He, Sally Jo Cunningham, and

Preben Hansen (Eds.). ACM, 373–376. https://doi.org/10.1145/3383583.3398615

[36] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to information retrieval. Cambridge University Press. https://doi.org/10.

1017/CBO9780511809071

[37] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.

Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language

Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55–60. http://www.aclweb.org/anthology/P/P14/P14-5010

[38] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey

Dean. 2013. Distributed Representations of Words and Phrases and their

Compositionality. In Advances in Neural Information Processing Systems 26:

https://commoncrawl.org/the-data/
https://elastic.co/
https://www.wikipedia.org/
https://github.com/facebookresearch/faiss
https://github.com/lemire/JavaFastPFOR
https://lucene.apache.org/
https://neo4j.com/docs/cypher-manual/current/query-tuning/indexes/
https://learning.blogs.nytimes.com/on-this-day/
https://catalog.ldc.upenn.edu/LDC2008T19
https://stanfordnlp.github.io/CoreNLP/memory-time.html
https://doi.org/10.5220/0006962201460153
https://doi.org/10.1016/j.is.2021.101807
https://doi.org/10.1145/2505515.2505689
https://doi.org/10.15398/jlm.v1i1.60
https://doi.org/10.1109/ICDE.2006.48
https://doi.org/10.1145/3336191.3371848
https://doi.org/10.1145/1060745.1060811
https://doi.org/10.1145/1060745.1060811
http://www.lrec-conf.org/proceedings/lrec2012/summaries/284.html
https://doi.org/10.1145/2001269.2001288
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1017/S1351324904003523
https://doi.org/10.1017/S1351324904003523
https://doi.org/10.3115/1219840.1219854
https://doi.org/10.3115/1219840.1219854
http://proceedings.mlr.press/v119/guo20h.html
http://proceedings.mlr.press/v119/guo20h.html
https://doi.org/10.1145/3269206.3271745
https://doi.org/10.1145/3341981.3344228
https://doi.org/10.1145/3409256.3409827
https://doi.org/10.1109/JCDL.2014.6970163
https://arxiv.org/abs/1603.07150
http://arxiv.org/abs/1603.07150
https://aclanthology.org/C92-2082/
https://aclanthology.org/C92-2082/
https://www.worldcat.org/oclc/315913020
https://www.worldcat.org/oclc/315913020
https://doi.org/10.2200/S00203ED1V01Y200907ICR007
https://doi.org/10.2200/S00203ED1V01Y200907ICR007
https://doi.org/10.1007/978-3-030-86324-1_25
https://doi.org/10.1145/3383583.3398615
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
http://www.aclweb.org/anthology/P/P14/P14-5010

JCDL ’24, December 16–20, 2024, Hong Kong, China Thanh-Hi Anthony Vu and Dhruv Gupta

27th Annual Conference on Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.

Weinberger (Eds.). 3111–3119. https://proceedings.neurips.cc/paper/2013/hash/

9aa42b31882ec039965f3c4923ce901b-Abstract.html

[39] Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest Neighbors with

Automatic Algorithm Configuration. In VISAPP 2009 - Proceedings of the Fourth
International Conference on Computer Vision Theory and Applications, Lisboa,
Portugal, February 5-8, 2009 - Volume 1, Alpesh Ranchordas and Helder Araújo

(Eds.). INSTICC Press, 331–340.

[40] Kiril Panev and Klaus Berberich. 2014. Phrase Queries with Inverted + Direct

Indexes. In Web Information Systems Engineering - WISE 2014 - 15th International
Conference, Thessaloniki, Greece, October 12-14, 2014, Proceedings, Part I. 156–169.
https://doi.org/10.1007/978-3-319-11749-2_13

[41] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:

Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1532–1543.

https://doi.org/10.3115/v1/d14-1162

[42] Alina Petrova and Sebastian Rudolph. 2016. Web-Mining Defeasible Knowledge

from Concessional Statements. In Graph-Based Representation and Reasoning -
22nd International Conference on Conceptual Structures, ICCS 2016, Annecy, France,
July 5-7, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9717), Ollivier
Haemmerlé, Gem Stapleton, and Catherine Faron-Zucker (Eds.). Springer, 191–

203. https://doi.org/10.1007/978-3-319-40985-6_15

[43] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the

Limits of Transfer Learning with a Unified Text-to-Text Transformer. https:

//doi.org/10.48550/ARXIV.1910.10683

[44] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A Primer in BERTology:

What We Know About How BERT Works. Trans. Assoc. Comput. Linguistics 8
(2020), 842–866. https://transacl.org/ojs/index.php/tacl/article/view/2257

[45] Stephen Roller, Douwe Kiela, and Maximilian Nickel. 2018. Hearst Patterns

Revisited: Automatic Hypernym Detection from Large Text Corpora. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers, Iryna
Gurevych and Yusuke Miyao (Eds.). Association for Computational Linguistics,

358–363. https://doi.org/10.18653/V1/P18-2057

[46] Erik F. Tjong Kim Sang and Katja Hofmann. 2009. Lexical Patterns or Depen-

dency Patterns: Which Is Better for Hypernym Extraction?. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning, CoNLL 2009,
Boulder, Colorado, USA, June 4-5, 2009, Suzanne Stevenson and Xavier Carreras

(Eds.). ACL, 174–182. https://aclanthology.org/W09-1122/

[47] Sebastian Schuster and Christopher D. Manning. 2016. Enhanced English Uni-

versal Dependencies: An Improved Representation for Natural Language Under-

standing Tasks. In Proceedings of the Tenth International Conference on Language
Resources and Evaluation LREC 2016, Portorož, Slovenia, May 23-28, 2016, Nico-
letta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik,

Bente Maegaard, Joseph Mariani, Hélène Mazo, Asunción Moreno, Jan Odijk,

and Stelios Piperidis (Eds.). European Language Resources Association (ELRA).

http://www.lrec-conf.org/proceedings/lrec2016/summaries/779.html

[48] Julian Seitner, Christian Bizer, Kai Eckert, Stefano Faralli, Robert Meusel, Heiko

Paulheim, and Simone Paolo Ponzetto. 2016. A Large DataBase of Hypernymy

Relations Extracted from theWeb. In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation LREC 2016, Portorož, Slovenia, May 23-
28, 2016, Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko

Grobelnik, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asunción Moreno,

Jan Odijk, and Stelios Piperidis (Eds.). European Language Resources Association

(ELRA). http://www.lrec-conf.org/proceedings/lrec2016/summaries/204.html

[49] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2004. Learning Syntactic Patterns

for Automatic Hypernym Discovery. In Advances in Neural Information Processing
Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13-18,
2004, Vancouver, British Columbia, Canada]. 1297–1304. https://proceedings.

neurips.cc/paper/2004/hash/358aee4cc897452c00244351e4d91f69-Abstract.html

[50] Andreas Spitz and Michael Gertz. 2016. Terms over LOAD: Leveraging Named

Entities for Cross-Document Extraction and Summarization of Events. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016, Raffaele Perego,
Fabrizio Sebastiani, Javed A. Aslam, Ian Ruthven, and Justin Zobel (Eds.). ACM,

503–512. https://doi.org/10.1145/2911451.2911529

[51] Maite Taboada and María de los Ángeles Gómez-González. 2012. Discourse

markers and coherence relations: Comparison across markers, languages and

modalities. Linguistics and the Human Sciences 6, 1-3 (Dec. 2012), 17–41. https:

//doi.org/10.1558/lhs.v6i1-3.17

[52] Melissa Terras, James Baker, James Hetherington, David Beavan, Martin Zaltz

Austwick, Anne Welsh, Helen O’Neill, Will Finley, Oliver Duke-Williams, and

Adam Farquhar. 2018. Enabling complex analysis of large-scale digital collections:

humanities research, high-performance computing, and transforming access to

British Library digital collections. Digit. Scholarsh. Humanit. 33, 2 (2018), 456–466.
https://doi.org/10.1093/LLC/FQX020

[53] Stefan Thater, Hagen Fürstenau, and Manfred Pinkal. 2010. Contextualizing

Semantic Representations Using Syntactically Enriched Vector Models. In ACL
2010, Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, July 11-16, 2010, Uppsala, Sweden, Jan Hajic, Sandra Carberry, and

Stephen Clark (Eds.). The Association for Computer Linguistics, 948–957. https:

//aclanthology.org/P10-1097/

[54] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,

and Alon Y. Halevy. 2021. Database reasoning over text. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6, 2021, Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics,

3091–3104. https://doi.org/10.18653/v1/2021.acl-long.241

[55] Xiaolan Wang, Aaron Feng, Behzad Golshan, Alon Y. Halevy, George A. Mihaila,

Hidekazu Oiwa, and Wang-Chiew Tan. 2018. Scalable Semantic Querying of

Text. Proc. VLDB Endow. 11, 9 (2018), 961–974. https://doi.org/10.14778/3213880.

3213887

[56] Hugh E. Williams, Justin Zobel, and Dirk Bahle. 2004. Fast Phrase Querying

with Combined Indexes. ACM Trans. Inf. Syst. 22, 4 (Oct. 2004), 573–594. https:

//doi.org/10.1145/1028099.1028102

[57] Xifeng Yan, Philip S. Yu, and Jiawei Han. 2004. Graph Indexing: A Frequent

Structure-based Approach. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Paris, France, June 13-18, 2004, Gerhard
Weikum, Arnd Christian König, and Stefan Deßloch (Eds.). ACM, 335–346. https:

//doi.org/10.1145/1007568.1007607

[58] ChengXiang Zhai and Sean Massung. 2016. Text Data Management and Analysis:
A Practical Introduction to Information Retrieval and Text Mining. Association for

Computing Machinery and Morgan & Claypool, New York, NY, USA.

[59] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-

Scalar RAM-CPU Cache Compression. In Proceedings of the 22Nd International
Conference on Data Engineering (ICDE ’06). IEEE Computer Society, Washington,

DC, USA, 59–. https://doi.org/10.1109/ICDE.2006.150

https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.1007/978-3-319-11749-2_13
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1007/978-3-319-40985-6_15
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://transacl.org/ojs/index.php/tacl/article/view/2257
https://doi.org/10.18653/V1/P18-2057
https://aclanthology.org/W09-1122/
http://www.lrec-conf.org/proceedings/lrec2016/summaries/779.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/204.html
https://proceedings.neurips.cc/paper/2004/hash/358aee4cc897452c00244351e4d91f69-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/358aee4cc897452c00244351e4d91f69-Abstract.html
https://doi.org/10.1145/2911451.2911529
https://doi.org/10.1558/lhs.v6i1-3.17
https://doi.org/10.1558/lhs.v6i1-3.17
https://doi.org/10.1093/LLC/FQX020
https://aclanthology.org/P10-1097/
https://aclanthology.org/P10-1097/
https://doi.org/10.18653/v1/2021.acl-long.241
https://doi.org/10.14778/3213880.3213887
https://doi.org/10.14778/3213880.3213887
https://doi.org/10.1145/1028099.1028102
https://doi.org/10.1145/1028099.1028102
https://doi.org/10.1145/1007568.1007607
https://doi.org/10.1145/1007568.1007607
https://doi.org/10.1109/ICDE.2006.150

	Abstract
	1 Introduction
	2 KNITTIR
	2.1 Syntactical Text Model
	2.2 Analytics-Centric Search Framework
	2.3 Query Language
	2.4 Index Design
	2.5 Query Processing

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

