
JIGSAW: Structuring Text into Tables

Dhruv Gupta
Max Planck Institute for Informatics

Saarland Informatics Campus, Germany

Klaus Berberich
Max Planck Institute for Informatics, Germany

htw saar, Germany

ABSTRACT
We present jigsaw, an end-to-end query driven system that effi-
ciently generates structured tables from unstructured documents.
To do so, first we describe how we can quickly retrieve sentences
in support of structured queries that describe the table schema.
Second, we describe how we can estimate table cell values using
document context where such values can not be retrieved. Third,
we describe how we can link together similar rows, rank, and di-
versify them to generate high-quality tables. We show that jigsaw
can generate tables from 25 million documents within seconds.
ACM Reference Format:
Dhruv Gupta and Klaus Berberich. 2019. JIGSAW: Structuring Text into
Tables. In The 2019 ACM SIGIR International Conference on the Theory of In-
formation Retrieval (ICTIR ’19), October 2–5, 2019, Santa Clara, CA, USA.ACM,
NewYork, NY, USA, 8 pages.https://doi.org/10.1145/3341981.3344228

1 INTRODUCTION
Tables are structured summaries obtained frommultiple documents.
Tables already present in documents or web tables are an important
resource for tasks such as question answering, fact checking, and
analytics. Manually generating tables is a laborious task. Teams of
journalists often collaborate to curate tables using spreadsheet tools
(e.g., Google Fusion Tables) [21]. To reduce this human effort, we
need an information retrieval (IR) system that instead of presenting
ten blue links, generates structured tables in response to queries.

Results in the form of structured snippets [5], knowledge pan-
els [23], and lists of related entities [24] are gaining prominence
in search results. To create them, structured data in the form of
knowledge graphs (KGs) [4, 17] and web tables [13, 32] are lever-
aged. These approaches are limited as they can only use fixed
schema associated with individual web tables or KG schema in the
form of ⟨s,p,o⟩ triples. To generate tables for user-defined schema
from unstructured text collections, we leverage semantic annota-
tions that natural language processing (NLP) tools can now provide
accurately. Concretely, annotations in the form of part-of-speech
(e.g., google⊕nnp), named entities (e.g., larry page⊕person), tem-
poral (e.g., 2020s⊕[2020, 2029]), and numerical expressions (e.g.,
a million dollars⊕$1 × 106) help us impose a lexico-syntactic
structure over unstructured text. Using this insight, we can per-
form structured search over large document collections and put
together tables using redundant, partial, and paraphrased pieces of
text spread across millions of documents. Fig. 1 shows an example
table containing Google acquisitions generated by jigsaw.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICTIR ’19, October 2–5, 2019, Santa Clara, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6881-0/19/10. . . $15.00
https://doi.org/10.1145/3341981.3344228

〈
![google |google inc. |google llc], ![acquired |takeover |bought], {!ORG, ?TIME, ?MONEY}

〉
NO. SCORE ORG TIME MONEY

1. 0.721 motorola mobility [2014, 2014] [$ 2.22× 108 , $ 1.95× 1010]
2. 0.057 boston dynamics [2013, 2013] [$ 1.20× 109 , $ 3.60× 109]
3. 0.036 youtube [2006, 2006] [$ 1.00× 109 , $ 1.50× 109]
4. 0.014 skybox imaging [2014, 2014] [$ 2.78× 108 , $ 8.33× 108]
5. 0.008 redwood robotics [2004, 2004] [$ 2.00× 105 , $ 4.00× 105]

Figure 1: An example table generated from theGDELTnews archive.

2 PROBLEM DEFINITION
jigsaw generates a table, given its schema, from large annotated
document collections. As input, we are given a structured query
Q that describes the table schema:

StructuredQuery: Q = ⟨a1,a2, . . . ,aN⟩, (1)
where, each attributea can be specifiedwith the help of word se-

quences (e.g., ⟨took over ⟩), annotations (e.g., money) or a combina-
tion of both word sequences and annotations (e.g., ⟨youtube ⟩⊕org).
Let Σi denote the domain of values that attribute ai ∈ Q can take.
The table schema R is then defined by the query attributes. Con-
cretely, a row r ∈ T has the following structure:

Row Structure: r ⊂ 2Σ1 × 2Σ2 × . . .× 2ΣN . (2)
In Eq. 2, an attribute of query ai ∈ Q can refer to multiple ele-

ments from its domain Σ. Thus, tables generated by our approach
can contain cells with multiple values (zero normal form). To con-
struct the final table T we proceed in two steps. First, we construct
a raw table T. To construct T, we retrieve text regions that match
the query template Q. Using the retrieved text regions we create a
raw table that is a collection of rows that contain document meta-
data did, text region span in document text(·), and value(s) c (for
simplicity consider singular values in Eq. 3) for the query template:

Raw Table: T =
⋃

r =
⋃(

did, text(·), c1, c2, . . . , cN
)
. (3)

In the raw table T, we allow for relaxed matches to the query
template that will result in unknown values (null) as cell values.
We resolve null values using two approaches: local and global res-
olution. Local resolution uses the document which establishes the
provenance of the row to determine the missing values. Whereas,
global resolution relies on other similar rows in the raw table
(thereby leveraging cross-document evidences) to infer null values.

Second, having generated the raw table T, we link and aggre-
gate rows that mention similar text, entities, relations, temporal or
numerical values by leveraging the semantics of annotations in the
cell values to arrive at the final table T. Each aggregated row in the
final table is assigned a score(r) that reflects its prominence in
the document collection. Furthermore, the rows in table T can be
ranked using its originating context (provenance) rank(r) and di-
versified amongst other rows in the table diversify(r). Structure
of the final table can now be defined as:
T =

⋃
r =

⋃(
∪ did,∪ text(·), score(·), c1, c2, . . . , cN

)
.

https://doi.org/10.1145/3341981.3344228
https://doi.org/10.1145/3341981.3344228

3 INDEXES OVER ANNOTATED TEXT
Annotated Text Model. Consider, a large document collection
D = {d1, . . . ,d|D|}. Each document d ∈ D consists of sentences
d = ⟨s1, s2, . . . , s|d|⟩ which further consist of a sequence of words
s = ⟨w1,w2, . . . ,w|s|⟩ drawn from the vocabulary of the collection
ΣV. NLP tools can now deliver high-quality annotations over text
in the form of parts-of-speech, named entities, numerical quantities,
and temporal expressions. Consider, a NLP annotatorL that further
tags the sequence of words ⟨wi . . .wj⟩ (i ⩽ j) in documents with
elements ℓ from its annotation alphabet ΣL. This way we obtain
layers-of-annotation over text in documents (see Fig. 2). Semantic
annotations help us impose a lexico-syntactic structure over text.
This in turn helps us perform structured search over annotated doc-
ument collections. To do so, we leverage gyani [22] as our backend
indexing infrastructure. We briefly describe the indexes we use to
support our query operators.

Text Indexes help locate and compute statistics for text. To this
end, we first create n-gram indexes and dictionaries. n-gram in-
dexes record unigrams, bigrams, and trigrams with their positional
spans. While, the dictionaries record the document frequency (df)
and collection frequency (cf) of n-grams. The n-grams are derived
from the sentences in each document of D. Furthermore, to speed
up the retrieval of surface forms that are slight variations of a
complete label (e.g., [youtube video website | youtube website])
we create skip-gram indexes and dictionaries. Skip-gram indexes
record ordered co-occurrences of words within a context of ten
words. Annotation Indexes record for each annotation layer its
element and positional span (e.g., money with span [8, 11] in Fig. 2).
Annotated Text Indexes record positional spans for pair-wise
and ordered combinations of word sequences and annotations. For
each such combination in a sentence of a document, we create two
indexes: 2-fragment and 2-stitch indexes. Where, 2-fragments
are annotated word sequences (e.g., ⟨Google⊕ org⟩ in Fig. 2) and
2-stitches are ordered co-occurrences of word sequences with
other annotations in the sentences (e.g., ⟨YouTube, date⟩ in Fig. 2).

Direct Index. The inverted indexes help us retrieve positional
spans corresponding to text regions for a given structured query.
However, to retrieve the resolved annotation values (e.g., the re-
solved annotation value > $1× 109 for the phrase over a billion
dollars) we need to access the different layers of annotation for
a given text region. To this end, we store the documents with all
annotation layers and sentence boundaries in a direct index.

4 QUERY OPERATORS
We next describe the operators that help define the table schema.
Binding Operator (!ℓ & ?ℓ) are unary operators that specify

the annotations or word sequences that should be part of the table
schema. The binding operator can be specified using annotations,
e.g., ⟨ !person, !org ⟩ or word sequences, e.g., !⟨acquired ⟩. The
!ℓ operator requires that the values must be present in the text
regions being retrieved to populate a column in the table. Whereas,
?ℓ operator can perform a relaxed query match. That is, the !ℓ
operator can not result in null values, whereas the ?ℓ can be
relaxed to a null value. Semantics of !ℓ and ?ℓ can be specified as:

match(ℓ⟨i,j⟩, s) = {s ∈ d | d ∈ D∧ ℓ⟨i,j⟩ ⊏ s},

1 2 3 4 5 6 7 8 9 10 11

> $1 × 109[2006, 2006]

ORG ORG DATE MONEY

ANNOTATION

N-GRAM 2-FRAGMENT2-STITCH

NNP VBD RP NNP IN CD IN IN DT CD NNS .
Google took over YouTube in 2006 for over a billion dollars.

Figure 2: Inverted indexes over the annotated text model.

where, ℓ⟨i,j⟩ represents the text region ⟨wi, . . . ,wj⟩ tagged with
annotation ℓ and ⊏ denotes that ℓ⟨i,j⟩ is a contiguous subsequence
in sentence s. Bindings can be decorated with markers to increase
recall. These markers are: union, wildcard, and multiplicity.

Union Marker (|) helps to specify paraphrases for a word se-
quence binding, e.g., ![acquired | takeover | buy out]. The union
marker applies the Boolean disjunctive semantics to the text regions
matched for each of the paraphrases in the set.

Wildcard Marker (∗) helps to indicate variable-length gaps in
word sequences. With the ∗ marker, the corresponding cell values
for the binding contain the text regions that fill in the wildcard. An
example query using ∗ marker is: ?⟨obtained ∗ award ⟩.

Multiplicity Marker (×{m,n}) helps to associate multiple an-
notation values in a cell value for the binding. The multiplicity
marker specifies the minimum numberm and maximum number
n of annotation type ℓ a cell can contain for the binding. As an
example query consider:

〈
!⟨google ∗ acquired ⟩, !org ×{1, 3}

〉
.

Stack Operator (⊕) is a binary operator that helps in attaching
additional semantics to word sequences, e.g., !⟨paris⊕location⟩.
The semantics for the stack ⊕ operator are:
match(w⟨i,j⟩ ⊕ ℓ, s) = {s ∈ d | d ∈ D∧ ℓ⟨i,j⟩ ⊏ s∧w⟨i,j⟩ ⊏ s},
where, the annotation ℓ and the word sequence w⟨i,j⟩ occupy the
same positional span [i, j] in the sentence of a document s ∈ d.

A structured query containing !ℓ or ?ℓ will match annotated
text regions that contain their arguments in an ordered sequence. A
sequential order amongst the arguments of the query a ∈ Q helps
to curate tables for asymmetric relations. For instance, in the
table for the query, ⟨!org1, !⟨has acquired ⟩, !org2⟩, the matches
for org1 and org2 can not be exchanged.

Unorder Operator ({•}) is a n-ary operator that allows match-
ing text regions irrespective of the order in which its arguments are
mentioned. For example, the query, ⟨!org, !⟨has acquired ⟩, {!org,
?money, ?date}⟩, treats the bindings for org, money, and date in
an unordered manner. The unorder operator is useful for creat-
ing tables for symmetric relations where the order amongst the
bindings is not important, e.g., {!person, !married, !person}.

5 QUERY PROCESSING
We next discuss how to derive a query execution plan for retrieval
of annotated text regions for a structured query Q.

Query Graph. The structured query Q, represents a template
to be matched against the annotated text model. This sequence of
query operators and their arguments can be succinctly represented
in a graph. Let, G(V ,E) represent a directed graph corresponding to
the query Q, where the set of vertices V represents the arguments
(e.g., word sequences or annotation types) and E be a set of directed
edges that represents the query operator semantics. We associate a
function q(e) with each edge e ∈ E, that defines either sequential,
stacking, unorder, or multiplicity semantics between the connecting
vertices. Fig. 3 shows an example of a query graph.

Q =
〈
!ORG, !〈invested in〉, !ORG×{1, 3}, {?MONEY, ?TIME}

〉
1 2 3 4 5

Query Graph: G

1 2 3

4

5

×{1,3}
∗

∗

Graph Partitioning: S =
{
(1, 2), (2, 3), (2, 4), (2, 5)

}
Figure 3: An example query, its graph, its partitioning, and assembly.
Square nodes correspond to anchor vertices. Each graph partition
S ∈ S is highlighted in color in the query graph G.

Sequential Semantics inherent in the query structure Q =
⟨a1,a2, . . . ,ak⟩ are represented by a directed edge between two of
the query arguments. Sequential semantics can also be specified
with the help of the bindings operator. The sequential semantics
q(e) ≡ q(ai → aj) ensure that the mention of the argument ai
is before that of aj in the annotated text model:

q(e) ≡ q
(
ai → aj

)
=

{
s ∈ d|d ∈D∧ ℓi⟨m,n⟩ ∈ s

∧ℓ
j
⟨p,q⟩ ∈ s∧ (m ⩽ n)∧ (n < p)∧ (p ⩽ q)

}
,

where, ℓi⟨m,n⟩ represents the annotationmatchingai and ℓ
j
⟨p,q⟩

represents the annotation matching aj. The multiplicity marker
constraints additionally imply that the number of argument value
lie within bounds conveyed along with the marker.

Stacking Semantics specified by the stack operator q(e) ≡
q(ai

⊕−→ aj) conveys that the arguments to the⊕ operator occupy
the same positions in the sentence but adorn different annotation
layers in the text model:

q(e) ≡ q
(
ai

⊕−→ aj

)
=

{
s ∈ d|d ∈D∧ ℓi⟨m,n⟩ ∈ s

∧ℓ
j
⟨p,q⟩ ∈ s∧ (m ⩽ n)∧ (p ⩽ q)∧ (m = p)∧ (n = q)

}
.

Unorder Semantics specified by the {aj , . . . ,ak} operatorq(e) ≡
q(ai

∗−→ {aj, . . . ,ak}) specifies that any of the arguments speci-
fied by aj, . . . ,ak can follow ai in the annotated text model (for
simplicity, we show only aj from {aj, . . . ,ak} below):

q(e) ≡ q
(
ai

∗−→ aj

)
=

{
s ∈ d|d ∈D∧ ℓi⟨m,n⟩ ∈ s

∨ℓ
j
⟨p,q⟩ ∈ s∧

(
(m ⩽ n)∨ (p ⩽ q)∨ (n < p)

)}
.

5.1 Query Optimization
We next discuss how we can process the query graph.

Graph Partitions. We partition the graph G into a set of sub-
graphs S such that each subgraph S ∈ S either consists of a single
vertex or a vertex pair (u, v) where vertex v is reachable from u.
That way, each subgraph corresponds to an indexing unit for which
we can retrieve its corresponding posting list from the five different
indexes described in Sec. 3. Concretely, for a subgraph where the
vertex pair consists of a word sequence and annotation, we retrieve
their results using the 2-stitch index (e.g., in Fig. 3, subgraph (1, 2)).
For a subgraph, where the vertex is an annotation, we can retrieve
their results using the annotation indexes. For a vertex that con-
tains the wildcard marker ∗ , we can either directly lookup their
posting lists from the skip-gram index or compute the resultant post-
ing list using n-gram indexes. For a vertex that contains the stack op-
erator, we can retrieve its posting list using the 2-fragment indexes.

Greedy Graph Partitioning and Optimization. In a graph
partitioning, certain attribute combinations can be retrieved more
quickly than others, e.g., (org → acquired) versus (org → money).
Since, there can exist multiple graph partitions, we opt for that one
which contains subgraphs whose corresponding posting lists are
shortest in the indexes. Thus, a naïve decomposition of the graph
into subgraphs in which each vertex is adjacent to each other (e.g.,
S = {(1, 2), (2, 3), (3, 4), (3, 5)} in Fig. 3) may not correspond to an
efficient query execution plan. To speedup the query processing,
we partition the graph in a greedy manner. Specifically, we seek
anchor vertices, that correspond to bindings for n-grams (e.g.,
trigrams) and bindings for annotation types (e.g., money) whose
document frequency is less than other bindings in G. Therefore,
a subgraph (indexing unit) whose single vertex comprises of an
anchor vertex shall have overall document frequency less than the
anchor vertex by itself. Concretely, we first identify anchor vertices
whose document frequencies are least amongst the bindings in the
query graph G using dictionaries. Second, we compute subgraphs
of vertex pairs: one of which is an anchor vertex and the other
is reachable from the anchor vertex. Consider the query in Fig. 3,
where the anchor node corresponds to the bigram invested in.
Using this anchor vertex, we can partition the query graph as
S = {(1, 2), (2, 3), (2, 4), (2, 5)}, where each vertex is reachable from
the anchor vertex.Direct Index can be further used in conjunction
with the inverted indexes to speed up the processing of the query
graph. We do this by keeping track of the number of common
documentswhen processing the subgraphs in the graph partitioning
S. When this number is small (e.g., ⩽ 25), we can switch over to
the direct index to inspect the annotation layers for the remaining
subgraphs in the partition.

5.2 Assembling the Puzzle (Raw Table)
Using the posting lists for the subgraphs in the partitioned graph,
we assemble the complete text regions as evidences. This is done by
computing the overlaps of the positional spans for the text regions
in each document, with respect to the anchor vertex. This process of
assembling the text regions as evidences is illustrated in Fig. 3. The
assembled text regions help us to generate the raw table T. The text
regions gathered as evidences however contain only the positional
spans. At this stage, we consider only those positional spans that
are short and span a sentence. We prefer concise sentences as they
yield semantically meaningful rows in the table. To do this, we first
rank positional spans by increasing length. Then, we check that
they lie within a sentence using the sentence boundaries stored
in the direct index. These positional spans are next filled in with
values for the various bindings in the structured query Q. To fill
in the values, we turn to the direct index that stores within it the
values for the annotations and the word sequences corresponding
to the assembled positional spans. To generate the raw table, we
instantiate a table with the number of columns equal to the number
of bindings present in the structured query Q. For each retrieved
text region, we create a row in the table. Then, for each binding
we lookup its cell value using the direct index. At this step, we
additionally verify the multiplicity constraints, if present. Also, if
no value for a binding could be found, we fill its corresponding
cell value as null. The null values are inferred from other near-
duplicate rows using LINK and ANALYSIS operators.

for a billion dollars

for over a billion dollars

for under a billion dollars

for around a billion dollars

≡
≡
≡
≡

$109

> $109

< $109

∼ $109

≡
≡
≡
≡

[
109, 109

]

[
109, 109 + ∆

]

[
109 − ∆, 109

]

[
109 −∆, 109 +∆

]

Figure 4: Modeling uncertainty in numerical expressions.

6 SEMANTIC LINK OPERATOR
LINK operators group together near-duplicate mentions of text,
entities, temporal, and numerical values in the raw table to generate
the final table. The LINK operators provide functionality that is
similar to that of deduplication in databases [19, 27]. However
there the focus has been on linking records using only surface
forms of attribute values. In contrast, our LINK operators take into
account the context (or document) from which the row has been
derived and collection-level statistics. Furthermore, we model the
semantics behind the annotations that are part of the table schema
when applying LINK. We model two kinds of semantics: text and
numerical (Sec. 6.1 and Sec. 6.2). We model the semantics of text for
the annotation types of: part-of-speech and named entities of types
person, organization, location, and misc. We model the semantics
of numbers for the annotation types: date, time, money, percent,
and number. Additionally, we can locally resolve null values (local
null resolution) (Sec. 6.3) by using the provenance of each row.

6.1 Semantic Model for Text
To link word sequences that refer to the same entity (person, orga-
nization, and location) or concept (misc) in different rows we rely
on three similarity computations: surface, contextual, and global.

Surface Similarity establishes similarity between two strings
in cell values using traditional edit-distance based measures. To this
end, we use the Jaro-Winkler similarity [29], to compute the simi-
larity between two text cell values c1 and c2 containing text . We
denote this surface level similarity measure by: simsurface(c1, c2).
For example, simsurface(motorola, motorola mobility) = 0.91.

Contextual Similarity computes the similarity between the
originating text regions of the cell values. For example, we can link
together the word sequences, youtube and video sharing based on
the similarity of their contexts, e.g., google acquired the video
website youtube and google buys out video sharing platform,
youtube. Concretely, the local text similarity is defined below:

sim
context

(c1, c2) =
| text(c1) ∩ text(c2) |
| text(c1) ∪ text(c2) |

. (4)

Eq. 4 captures the Jaccard coefficient between the bag of words
for the matched text regions, text(c1) and text(c2), that help
derive the cell values, c1 and c2.

Global Similarity computes text similarity by leveraging co-
occurrence statistics aggregated over the entire document collec-
tion. For instance, we can link the entities referred by the phrases,
youtube and video sharing based on the co-occurrence counts
of { youtube, video } and { youtube, sharing }. To compute this
similarity we leverage the skip-gram dictionaries that contain the
document frequencies (df) of word pairs {w1,w2}. This global text
similarity is defined below:

sim
global

(c1, c2) =
1
Z
·

∑
w1∈words(c1)

∑
w2∈words(c2)

df({w1,w2})
|D|

, (5)

where, Z = |words(c1)| · |words(c2)| is a normalization constant.
The equation above captures the global similarity by computing
the co-occurrence frequency of words in the cell values c1 and c2.
The complete text similarity between two cell values c1 and c2 can
now be defined as:

sim
text

(c1, c2)=
1
3

[
sim

surface
(c1, c2)+ sim

context
(c1, c2)+ sim

global
(c1, c2)

]
. (6)

We make the above design choice primarily for scalability rea-
sons. Our method leverages pre-computed word co-occurrence sta-
tistics, which avoids computing transformed text representations
(e.g., for neural embedding methods) at query time, thus speeding
up the similarity computation.

6.2 Semantic Model for Numbers
Numerical values in the form of mentions of money, percentages,
date, and time can be very vague and uncertain. For instance, the
numerical mention in Fig. 2 is disambiguated to > $1× 109. This
numerical expression can refer to an infinite number of uncertain
intervals. Similarly, a temporal expression such as the 60s can refer
to a multitude of time intervals. Therefore, it becomes essential
that we model their uncertainty to compute similarity between
numerical values when applying the LINK operator.

To incorporate uncertainty in numerical values, we model a
numerical expression, whose values belong to a domain ΣN , by
associating an interval with it: [b, e], where b denotes the begin and
e the end. A temporal expression (or date) can be converted to a
numerical expression by representing the dates as UNIX epochs (i.e.,
the number of milliseconds passed since 1970-01-01). We model the
uncertainty based on the annotation type (e.g., date or numerical)
and its value. Fig. 4 shows how uncertainty in numerical expressions
can be modeled. The uncertainty ∆ for annotations of date and
time is determined by the difference between two consecutive time
elements at a given granularity (e.g., ∆ = 1 year). The uncertainty
∆ for the rest of the numerical annotations is equal to half of the
value being modeled (e.g., for the percent annotation value of 50%,
∆ is equal to 25%). The similarity between two numerical cell values
c1 and c2 is:

sim
number

(c1, c2) =
|c1 ∩ c2|
|c1 ∪ c2|

. (7)

The denominator in Eq. 7 represents the number of numerical
values at a fixed granularity that can be referenced by the union of
the interval representation for c1 and c1. The numerator computes
the extent of agreement in values between c1 and c2.

6.3 Local Resolution of NULL Values
null values in the raw table arise if the ?ℓ operator is used to
relax the match for the bindings. Unlike traditional imputation
techniques in databases [12, 20] and open-IE approaches, jigsaw
can leverage the provenance of a raw row to infer or estimate the
null value. To resolve null values, we make a narrative assumption:
the provenance for the row bearing the null value is contained in
a document that describes a narrative of related events or concepts.
For instance, an acquisition made by Google for an undisclosed
amount may be described by a news article by comparing it to
related acquisitions. To resolve the null value locally we describe
three methods: scoping, proximity, and semantic redundancy.

0 1 2 3 4 5 6 7 8 9

TIME MONEY TIME MONEY

Figure 5: Inferring null values using the context surrounding the
matched text region. Circular nodes represent sentence boundaries.
Shaded region corresponds to the matched text region.

Scoping for resolving null values relies on frequency for named
entity annotation type in the document containing the evidence.
While, for numbers and time, the null value is resolved by con-
structing an interval using the minimum and maximum values of
the same annotation type in the document containing the evidence.
For instance, in Fig. 5 a null for annotation type of time can be
estimated by constructing an interval using the annotation values
present on position 0 and 8.

Proximity for resolving null values considers only nearby an-
notation values for estimation. This way, we can restrict ourselves
to few (e.g., three) nearby values for resolving the null values. For
example, in Fig. 5 we can resolve a null value for money by looking
at only the annotation at position 2 as the first nearest value.

Semantic Redundancy for resolving null values considers fre-
quency in semantic models for text or numbers. Thus, for estimating
the null values for named entity types for person, org, and loc
we consider the semantic similarity measures discussed in Sec. 6.1.
For estimating the null values for annotation types of numbers
and time, we consider the similarity measures described in Sec. 6.2.

The user can select based on the application domain from the
above three methods for filling in the null values to yield the best
table. For instance, for entity-centric queries, the proximity method,
works well (in a manner similar to that of co-reference resolution).
For event-centric queries, the semantic redundancy method is more
suitable for local resolution of null values.

6.4 LINK
(
T, {a1,a2, . . . ,an}, θ

)
Operator

The operator LINK (T, {a1,a2, . . . ,an}, θ) takes as an input the raw
table T; an attribute set {a1,a2, . . . ,an} to link by; and a thresh-
old θ to determine the degree of similarity between rows. The
LINK operator outputs sets of rows that are near-duplicates.

Linking of rows in the raw table T by attributes is done as follows.
First, each row in the raw table T is considered related to every other
row. That is, we model the raw table as a complete undirected graph.
Each undirected edge in the graph is weighted by a similarity value
that is computed attribute-wise. That is, corresponding attributes
from both rows are compared using Eq. 6 for text-based attributes
and Eq. 7 for numerical attributes:

sim(r1, r2) =
1
N

·
∑

a∈{a1 ,...,ak}

sim
(
value(r1,a), value(r2,a)

)
, (8)

where, the function value(r,a) returns the cell value in the row
r for the attribute a and N denotes the total number of attributes
(or columns in the table). Our model for a row in a table r ∈ T

(see Eq. 2) allows for multiple cell values. To compute similarity
between rows that contain multiple cell values for a single attribute,
we compute their average pair-wise similarity:

sim(r1, r2) =
1
N
·

∑
a∈{a1 ,...,ak}

1
Y
·

∑
c1∈value(r1 ,a)

∑
c2∈value(r2 ,a)

sim
(
c1, c2

)
,

Algorithm 1: FLAT and SCORE operators.
Input :Connected Component, S = {r1 , r2 , . . . , rn}.

1 Function FLAT(S = {r1 , r2 , . . . , rn})
2 rrep ← ∅ // Create a new representative row for S.
3 for ai ∈ rrep do
4 value←arg max(sim(ci ,∀cj ∈ S.values(ai) \ ci))
5 rrep .put(ai , value)
6 return rrep

Input : The Final Table, T = {r1 , r2 , . . . , rn}.
7 Function SCORE(T)

// Compute support for each row in the final table.
8 for r ∈ T do
9 r.score = #raw rows forming r/#total rows in raw table T

10 Sort(T) // Sort the rows in table by descending support.
11 Tnew ← ∅
12 while Tis not empty do
13 Tnew .append(arg max((1− sim(ri ,∀rj ∈ Tnew \ ri)/|T|)))
14 remove the row appended to Tnew from T

15 return Tnew

where, Y = |value(r1,a)| · |value(r2,a)| is a normalization factor.
Note that, the similarity of a cell value to a null value, that could
not be resolved using local context, is defined to be zero:

sim(null, c) = 0. (9)

Second, we find connected components in the weighted undirected
graph representing T. A subgraph is considered connected if each
edge in it has an edge weight greater than or equal to a threshold θ.
Put another way, connected components can be found by removing
all the edges in weighted graph that have weight less than the
threshold θ. The remaining subgraphs are then clusters of related
rows with respect to their attribute-wise similarity.

7 ANALYSIS OPERATORS
The LINK operator groups together near-duplicate raw rows using
semantics of text and numbers. The ANALYSIS operators work in
conjunction with LINK operators to flatten the group of rows into
a representative row and to assign a score to each representative
row for ranking. Additionally, when flattening a group of rows we
can infer null values, those which could not be resolved locally,
from other near-duplicate rows (global null resolution). We next
describe these three operators: FLAT, SCORE, and RANK.

FLAT(S = {r1, r2, . . . , rk}) Operator. The final table T consists
only of representative rows r ∈ T derived from each connected
component {r1, r2, . . . , rk} ∈ T discovered by LINK. Each represen-
tative row r ∈ T, consists of cell values from different rows in
the connected component. The selection of the cell values for the
representative row is done by computing the similarity of a cell
value from a row to all the other cell values for that attribute in the
set S. The cell value that is most similar to the others is chosen to be
part of the representative row. In this step, the representative row
can infer the value for nulls, that could not be resolved using local
context, from other rows’ cell values; we refer to this as global
resolution of null values. The global null resolution thus re-
solves nulls using cross-document evidences. We make the above
design choice primarily to resolve null values independently from
other attributes. Alternative design choices (e.g., selecting the most
similar row in its entirety from the group) are less helpful in global
null resolution. The FLAT operator is described in Algorithm 1.

Table 1: Annotated document collection size and statistics.
collection size (gb) #documents #words #sentences #part-of-speech #named entity #time #numbers

nyt 49.7 1,855,623 1,058,949,098 54,024,146 1,058,949,098 107,745,696 15,411,681 21,720,437
gigaword 193.6 9,870,655 3,988,683,648 181,386,746 3,988,683,648 517,420,195 72,247,124 102,299,554
gdelt 296.2 14,320,457 6,371,451,092 297,861,511 6,371,451,092 640,812,778 94,009,542 104,964,085

Table 2: Index sizes in Gigabytes (GB).
index type nyt gigaword gdelt

direct index 18.80 52.40 82.30
n-gram dictionaries 4.54 10.50 19.04
skip-gram dictionary 14.40 21.30 29.30
skip-gram index 56.10 203.60 289.00
n-gram indexes 45.90 154.40 234.80
annotation indexes 2.39 9.33 16.03
2-fragment indexes 6.30 24.16 36.84
2-stitch indexes 141.00 542.40 677.10

SCORE(S = {r1, r2, . . . , rk}) Operator. For each connected com-
ponent S ∈ T (or r ∈ T), the SCORE operator assigns a value indi-
cating: the size of S and the novelty of S amongst other connected
components in T:

score(r ∈ T) = support(r ∈ T) · diversify(r ∈ T),

where, support(r ∈ T) ≡ support(S ∈ T) = |S|/|T|. To diversify
the representative rows in the final table T, the objective is to order
rows in the final table such that a row is highly dissimilar to the
rows above it. The SCORE operator is also described in Algorithm 1.

RANK Operator. We can order the rows in the final table by two
methods. First, we can simply rank r ∈ T by the scores generated by
the SCORE operator: rankscore. Second, we can rank by the average
length of the annotated text regions (text) supporting the row
r ∈ T . Rank by length can be defined as the average inverse length
of the annotated text region span:

rank
length

(r ∈ T) ≡ rank
length

(S ∈ T) =
1
|S|

∑
r∈S

1
| text(r) |

.

Thus, each row in the final table r ∈ T, contains rows that have
been pieced together from partial, redundant, and paraphrased
information from the text regions obtained for a structured query
Q from large annotated document collection.

8 EVALUATION
In this section, we describe the evaluation setup of our experiments.

Annotated Document Collections and their Indexes. To
evaluate jigsaw, we considered three large news archives. The New
York Times annotated corpus consists of around twomillion articles
published during 1997-2007 [8]. The fifth edition of the English Gi-
gaword consists of around ten million articles from seven different
sources published during 1995-2010 [9]. GDelt news archive com-
prises of around fourteen million articles related to events available
at the GDelt project website [3]. All three document collections,
were preprocessed with the Stanford CoreNLP toolkit to obtain
annotation for part-of-speech, named entity, temporal expressions,
and numerical values. Statistics for the annotated document collec-
tions are displayed in Table 1. For each collection, we created the
five indexes and the direct index (see Sec. 3). We store our indexes
using HBase, a distributed and extensible record store. We list the
indexes and their sizes for each document collection in Table 2.

Jigsaw Puzzles (Query Testbed). jigsaw can provide multi-
ple answers in the form of a table for a query where many an-
swers are correct (e.g., google acquisitions). To measure the

Table 3: Query testbed statistics.
category #entities predicate bindings example entity

olympians 265 participant of !location, ?time Usain Bolt
marriage 237 spouse !person , ?time Bob Dylan
footballers 101 sports team !org , ?time Kaká
ceos 87 ceo !person , ?time Google
acquisitions 58 acquire !org , ?time, ?money Takeda

quality of the generated table, we need to identify queries for
which we need to link text, time, or numbers. To this end, we
constructed a testbed of 748 tabular queries concerning acqui-
sitions, CEOs, Olympians, footballers, and marriages for popu-
lar entities. We obtained companies and their acquisitions from
CrunchBase [1]. These prominent 58 organizations were identi-
fied using Fortune 500 [2], large software [7] and manufactur-
ing [6] companies lists. For the remaining categories, we con-
structed the tables from the Wikidata Knowledge Graph. Specif-
ically to generate these queries, we restrict ourselves to promi-
nent named entities in Wikidata. Where, the prominence of an
entity in Wikidata is determined using the concept of sitelinks [10].
To instantiate the structured queries, we use the following query
template: ⟨entity, predicate, unordered bindings⟩. The template
is then filled with aliases of entities (e.g., [google | search giant]),
paraphrases for the predicates (e.g., [acquired | takeover]) from
Wikidata and bindings for the requisite category (e.g., org, time,
and money for acquisitions — see Table 3). For example, a query for
acquisitions (see Table 3) is shown below:
〈
![google |google inc. |google llc], ![acquires |acquired |acquisition |

takeover |bought |buys |scoops up |to buy |slurps], {!org, ?time, ?money}
〉
.

Quality of the Generated Tables is measured by comparing
against the ground truth extracted from Crunchbase and Wikidata.
That is, for each row in the ground truth table rtrue ∈ Ttrue, we seek
its equivalent row in the generated table and compare them in their
respective semantic models of representation. We can therefore
establish the notions of precision and recall using the semantic
similarity measures discussed in Sec. 6.

Precision between the generated table T and the ground truth
table Ttrue is computed by checking that each row in the generated
table r ∈ T finds a corresponding equivalent row in the ground
truth table rtrue ∈ Ttrue. This can be written as:

precision(T,Ttrue) =
1
|T|

∑
r∈T

argmax
rtrue∈Ttrue

sim(r, rtrue), (10)

where, the similarity between two rows, sim(r, rtrue), is com-
puted using Eq. 8 described in Sec. 6.4. For text based attributes,
we seek the maximum similarity match between the generated cell
attribute and possible aliases in the ground truth.

Recall between the generated table T and the ground truth table
Ttrue measures how many rows from the ground truth table are
found in the generated table. This can be stated as:

recall(T,Ttrue) =
1

|Ttrue|

∑
rtrue∈Ttrue

argmax
r∈T

sim(r, rtrue). (11)

8.1 Setup
Currently, there exists no system that can generate tables for user-
defined schema over annotated document collections. To evaluate
jigsaw, we consider alternative design choices using various build-
ing blocks in our system.

Baseline Basic resolves null values for temporal and numerical
expressions using scoping. Linking of rows, relies on surface level
similarity and redundancy. Flattening of connected components is
done by considering the most frequent textual cell value; while for
numbers and time, minimum and maximum of the cell values in
the group is considered. For ranking, only support is considered.

Baseline Advanced resolves null values for temporal and nu-
merical expressions using proximity. Baseline Advanced links rows
based on text using surface and contextual similarity as discussed
in Sec. 6.1. Whereas, linking for numerical expressions is based on
simple interval overlaps. Flattening of connected components is
done by considering the most frequent textual cell value, while for
numbers and time the most frequent interval is chosen as represen-
tative. For ranking, here also only support is considered.

Systems jigsaw and jigsaw++, are our proposed systems. jig-
saw applies the semantic redundancy method for local null value
resolution. jigsaw++ considers the semantic redundancy method
for event-centric queries (i.e., acquisitions and Olympians) and
proximity method for entity-centric queries (i.e., CEOs, footballers,
and marriages). For flattening a group of rows, jigsaw considers
semantic redundancy and relatedness for numerical values and fre-
quency for text attributes. jigsaw++ considers the same method for
event-centric queries. For entity-centric queries jigsaw++ considers
the frequency based method for both text and numerical attributes.
For ranking, both support and diversity are considered.

Significance Tests results between the baseline Basic and jig-
saw are shown by △. Statistically significant results between base-
line Advanced and jigsaw are marked by ▲. The significance was
computed using the two-tailed paired t-Test at α = 0.05.

Hardware. The storage for the indexes is a cluster of twenty
machines running Cloudera CDH5.90 version of Hadoop andHBase.
Each machine in the Hadoop cluster is equipped with up to a 24 core
Intel Xeon CPU with 3.50 GHz processing speed, up to 128 GB of
RAM, and up to eight 4 TB worth of secondary storage. We perform
all evaluations on a high-memory compute node, with 96 core
Intel Xeon CPU at 2.66 GHz processing speed and 1.48 TB of RAM.

8.2 Results
We executed the baselines and systems for all of the queries in each
query category in Table 3. We considered three different values
of similarity thresholds θ ∈ {0.25, 0.50, 0.75} for the LINK operator,
to determine its best value. We then computed precision, recall,
and F1 (harmonic mean of precision and recall) at values of top-
k ∈ {10, 25, 50}. The results for precision and recall averaged over
all query categories for each collection are shown in Table 4 and 5.
We summarize the F1 values over all collections in Table 6. The
best value of the measures is highlighted for the corresponding
threshold value. For the collections NYT, Gigaword, and GDelt we
were able to generate 344, 444, and 414 tables respectively. The
number of tables vary per collection due to varying time periods of
their reporting. For example, NYT does not contain any acquisitions
for Twitter whereas Gigaword and GDelt do.

Table 4: Precision over all categories in the testbed.

n
y
t

top-k 10 25 50
θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
basic 0.04 0.04 0.23 0.02 0.02 0.17 0.01 0.01 0.12
advanced 0.04 0.17 0.23 0.01 0.10 0.18 0.01 0.06 0.14
jigsaw 0.05△▲ 0.22△▲ 0.24 0.02▲ 0.16△▲ 0.20△▲ 0.01 0.12△▲ 0.17△▲
jigsaw++ 0.05△▲ 0.22△▲ 0.25 0.02▲ 0.17△▲ 0.21△▲ 0.01 0.13△▲ 0.18△▲

g
i
g
a
w
o
r
d

top-k 10 25 50
θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
basic 0.04 0.04 0.27 0.01 0.02 0.23 0.01 0.01 0.18
advanced 0.04 0.22 0.29 0.02 0.15 0.25 0.01 0.09 0.21
jigsaw 0.05△▲ 0.27△▲ 0.26 0.02△ 0.23△▲ 0.25 0.01 0.20△▲ 0.23△▲
jigsaw++ 0.05△▲ 0.28△▲ 0.27 0.02△ 0.24△▲ 0.25 0.01 0.20△▲ 0.24△▲

g
d
e
l
t

top-k 10 25 50
θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
basic 0.04 0.05 0.27 0.02 0.02 0.19 0.01 0.01 0.15
advanced 0.04 0.17 0.27 0.02 0.12 0.21 0.01 0.08 0.17
jigsaw 0.06△▲ 0.24△▲ 0.30△▲ 0.02 0.19△▲ 0.26△▲ 0.01 0.15△▲ 0.24△▲
jigsaw++ 0.06△▲ 0.25△▲ 0.31△▲ 0.02 0.20△▲ 0.27△▲ 0.01 0.15△▲ 0.25△▲

Table 5: Recall over all categories in the testbed.

n
y
t

top-k 10 25 50
θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
basic 0.31 0.32 0.38 0.31 0.32 0.39 0.31 0.32 0.40
advanced 0.29 0.35 0.36 0.29 0.36 0.38 0.29 0.36 0.39
jigsaw 0.29 0.35△ 0.33 0.29 0.36△ 0.35 0.29 0.37△▲ 0.35
jigsaw++ 0.30▲ 0.36△▲ 0.36 0.30▲ 0.38△▲ 0.38 0.30▲ 0.39△▲ 0.39

g
i
g
a
w
o
r
d

top-k 10 25 50
θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
basic 0.29 0.30 0.40 0.29 0.30 0.43 0.29 0.30 0.44
advanced 0.29 0.37 0.39 0.29 0.38 0.42 0.29 0.38 0.44
jigsaw 0.29 0.37△ 0.35 0.29 0.40△▲ 0.37 0.29 0.42△▲ 0.39
jigsaw++ 0.30▲ 0.39△▲ 0.37 0.30▲ 0.42△▲ 0.41 0.30△▲ 0.44△▲ 0.43

g
d
e
l
t

top-k 10 25 50
θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
basic 0.32 0.32 0.40 0.32 0.32 0.42 0.32 0.32 0.43
advanced 0.32 0.37 0.38 0.32 0.39 0.41 0.32 0.39 0.43
jigsaw 0.31 0.38△ 0.37 0.31 0.40△ 0.39 0.31 0.42△▲ 0.41
jigsaw++ 0.32 0.39△▲ 0.40 0.32 0.42△▲ 0.43 0.32 0.44△▲ 0.44

Table 6: F1 for all testbed categories and all collections.

o
v
e
r
a
l
l

top-k 10 25 50
θθθ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
basic 0.07 0.08 0.30 0.03 0.03 0.25 0.02 0.02 0.21
advanced 0.07 0.24 0.30 0.03 0.17 0.26 0.01 0.12 0.23
jigsaw 0.09△▲ 0.28△▲ 0.30 0.04△▲ 0.24△▲ 0.28△▲ 0.02▲ 0.21△▲ 0.27△▲
jigsaw++ 0.09△▲ 0.29△▲ 0.31△ 0.04△▲ 0.25△▲ 0.29△▲ 0.02▲ 0.22△▲ 0.28△▲

Effectiveness Results. In terms of precision (see Table 4), we
observe that overall jigsaw achieves the best performance. In terms
of recall (see Table 5), we observe that jigsaw performs at par or
better when compared to the baselines. Note that perfect recall is
not possible due to: temporal coverage of collections and KG in-
completeness. When considering the F1 score (see Table 6), jigsaw
provides a balanced performance of high precision and good recall
as compared to the baselines that excel only in recall. The good
performance of jigsaw can be attributed to three key system design
choices. First, the baselines are more sensitive to θ as they rely
only on surface (Baseline Basic) or contextual (Baseline Advanced)
similarities for text. Whereas, jigsaw leverages surface, contextual,
and global text similarities to link rows. Second, jigsaw uses se-
mantic redundancy for null value resolution that provides higher
precision. However, the null resolution techniques utilized by the
baselines produce less reliable estimates for temporal and numer-
ical attributes. Third and finally, the techniques adopted by the
baselines for flattening linked rows result in broader temporal and
numerical representations that are less precise. In addition to this,
jigsaw is more robust and achieves higher precision at different
similarity thresholds θ.

Efficiency Results.We evaluated jigsaw for efficiency by exe-
cuting a sample of 100 queries from the query testbed three times
in cold-cache setting for each collection. To simulate cold caches,
we shuffle the queries in between rounds. To contrast the perfor-
mance of our query-driven system with existing open-IE systems:
we measure the time needed to scan the entire collection on our
Hadoop cluster once. This thus simulates the minimum amount of
time an open-IE system shall take to just retrieve all the sentences
for a query in an embarrassingly parallel manner. The results for
the scan baseline are shown in Table 7. The results for the end-to-
end run-times for our system jigsaw and the baselines Basic and
Advanced are shown in Table 8. From Table 7 we see that scanning
the entire collection for each query is in the order of minutes. From
Table 8, we see that end-to-end run times for generating tables
using the baselines or our system jigsaw are significantly less than
a simple scan. From Table 8, we observe that jigsaw takes more
time to generate tables than the baselines. This is because the base-
lines only leverage surface-level and contextual similarities that
are quick to compute as they only require in-memory operations.
On the other hand, jigsaw additionally leverages global similarity,
that relies on lookups from the dictionaries. This additional time
however provides us improved linking of raw rows. Overall, we
see that we gain at least an order of 13.96× speedup and at most
an order of 44.95× speedup over a simple scan of the collections.

9 RELATEDWORK
Annotated document collections have been leveraged by several
studies [15, 16, 22] for mining valuable data. [15] was seminal work
in proposing key operators to analyze annotated text corpora using
relational databases. [16, 22] describe efficient algorithms to per-
form search in tagged text corpora using inverted index operations.
However, none of the above systems support table generation capa-
bilities that can aggregate redundant, partial, and paraphrased text
evidences. A recent survey on the use of web tables [13], describes
the impact web tables have had on commercial search engines.
The authors also describe progress that has been made in terms
of augmenting web tables from additional data sources such as
KGs. [14] aims to link predicates from KGs to relations between at-
tributes in web tables in order to understand their schema. [30, 32]
generate tables from KGs to answer keyword queries. The above
approaches focus on leveraging existing structured resources (e.g.,
web tables and KGs) but not to generate tables from unstructured
text. Knowledge graph population techniques rely on identifying
salient extractions from documents or the Web [11]. Key works in
this direction are [18, 25, 26, 28, 31]. [26] relies on distributed itemset
mining for determining salient triples to be added to KGs. [28, 31]
uses Markov logic to reconcile and canonicalize triples. [18] ver-
ifies the correctness of the extracted triples by using a combina-
tion of prior-knowledge learned using random-walks and neural-
networks. [25] uses a suite of machine learning methods including
embedding-basedmethods to verify the quality of triples to be added
to its KG. However, all these methods are bound to a fixed schema
for extraction. Furthermore, the discussed methods solely rely on
offline methods of pre-computing the KG. jigsaw, on the other
hand, allows table generation for user-defined schema efficiently
and interactively in a query-driven manner.

Table 7: Time in seconds taken to scan a collection on our cluster.
nyt gigaword gdelt

111.00 396.00 604.00

Table 8: Run-times in seconds for our system jigsaw.
collection basic advanced jigsaw jigsaw++

nyt 3.68 ± 6.16 3.86 ± 6.85 7.63 ± 15.63 7.95 ± 16.28
gigaword 8.81 ± 11.12 9.09 ± 10.84 16.30 ± 20.85 16.45 ± 22.09

gdelt 17.33 ± 35.15 17.90 ± 36.22 28.37 ± 43.48 27.99 ± 42.56

10 CONCLUSION
We presented jigsaw, a system that generates tables from unstruc-
tured text for user-defined schema. To do so, we described QUERY op-
erators to define the table schema. To speedup query processing we
described a greedy query optimizer. To generate high-quality tables,
we described LINK and ANALYSIS operators that leverage semantic
models for text and numbers to group together near-duplicate rows.
Our evaluation demonstrates that jigsaw can generate high-quality
tables from over 25 million documents efficiently.

REFERENCES
[1] Crunchbase. https://www.crunchbase.com/.
[2] Fortune. http://fortune.com/fortune500/.
[3] The GDELT Project. https://www.gdeltproject.org/.
[4] Google Tables. https://research.google.com/tables.
[5] Structured Snippets in Google Web Search. https://ai.googleblog.com/

2014/09/introducing-structured-snippets-now.html.
[6] LargestManufacturing Companies by Revenue . https://en.wikipedia.org/

wiki/List_of_largest_manufacturing_companies_by_revenue.
[7] Largest Software Companies. https://en.wikipedia.org/wiki/List_of_

the_largest_software_companies.
[8] NYT Annotated Corpus. https://catalog.ldc.upenn.edu/LDC2008T19.
[9] Gigaword Fifth Edition. https://catalog.ldc.upenn.edu/LDC2011T07.
[10] Wikidata: Sitelinks. https://www.wikidata.org/wiki/Help:Sitelinks.
[11] M. Banko et al. 2007. Open Information Extraction from the Web. IJCAI 2007.
[12] C. Batini et al. Methodologies for Data Quality Assessment and Improvement.

ACM Comput. Surv. 41, 3 (2009), 16:1–16:52.
[13] M. J. Cafarella et al. Ten Years of WebTables. PVLDB 11, 12 (2018), 2140–2149.
[14] M. Cannaviccio et al. Towards Annotating Relational Data on the Web with

Language Models. WWW 2018.
[15] L. Chiticariu et al. SystemT: An Algebraic Approach to Declarative Information

Extraction. ACL 2010.
[16] C. L. A. Clarke et al. An Algebra for Structured Text Search and a Framework for

its Implementation. Comput. J. 38, 1 (1995), 43–56.
[17] D. Crow. Google Squared: Web Scale, Open Domain Information Extraction and

Presentation. ECIR 2010 Industry Day.
[18] X. Dong et al. Knowledge Vault: A Web-Scale Approach to Probabilistic Knowl-

edge Fusion. KDD 2014.
[19] A. K. Elmagarmid et al. Duplicate Record Detection: A Survey. IEEE Trans. Knowl.

Data Eng. 19, 1 (2007), 1–16.
[20] I. P. Fellegi and D. Holt. A Systematic Approach to Automatic Edit and Imputation.

J. Amer. Statist. Assoc. 71, 353 (1976), 17–35.
[21] J. Gray et al. The Data Journalism Handbook.
[22] D. Gupta and K. Berberich. GYANI: An Indexing Infrastructure for Knowledge-

Centric Tasks. CIKM 2018.
[23] J.W. Henry. 2013. Providing Knowledge Panels with Search Results. US Patent

App. 13/566,489.
[24] P. J. Hong et al. 2018. Related entities. US Patent App. 15/798,175.
[25] T. M. Mitchell et al. Never-Ending Learning. Commun. ACM 61, 5 (2018), 103–115.
[26] N. Nakashole et al. Scalable Knowledge Harvesting with High Precision and

High Recall. WSDM 2011.
[27] F. Naumann and M. Herschel. An Introduction to Duplicate Detection. Morgan &

Claypool Publishers.
[28] Feng Niu, Ce Zhang, C. Ré, and J.W. Shavlik. Elementary: Large-Scale Knowledge-

Base Construction via Machine Learning and Statistical Inference. Int. J. Semantic
Web Inf. Syst. 8, 3 (2012), 42–73.

[29] W. E Winkler. String Comparator Metrics and Enhanced Decision Rules in the
Fellegi-Sunter Model of Record Linkage. (1990).

[30] M. Yang et al. Finding Patterns in a Knowledge Base using Keywords to Compose
Table Answers. PVLDB 7, 14 (2014), 1809–1820.

[31] C. Zhang et al. DeepDive: Declarative Knowledge Base Construction. Commun.
ACM 60, 5 (2017), 93–102.

[32] S. Zhang and K. Balog. On-the-Fly Table Generation. SIGIR 2018.

https://www.crunchbase.com/
http://fortune.com/fortune500/
https://www.gdeltproject.org/
https://research.google.com/tables
https://ai.googleblog.com/2014/09/introducing-structured-snippets-now.html
https://ai.googleblog.com/2014/09/introducing-structured-snippets-now.html
https://en.wikipedia.org/wiki/List_of_largest_manufacturing_companies_by_revenue
https://en.wikipedia.org/wiki/List_of_largest_manufacturing_companies_by_revenue
https://en.wikipedia.org/wiki/List_of_the_largest_software_companies
https://en.wikipedia.org/wiki/List_of_the_largest_software_companies
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2011T07
https://www.wikidata.org/wiki/Help:Sitelinks

	Abstract
	1 Introduction
	2 Problem Definition
	3 Indexes Over Annotated Text
	4 QUERY Operators
	5 Query Processing
	5.1 Query Optimization
	5.2 Assembling the Puzzle (Raw Table)

	6 Semantic LINK Operator
	6.1 Semantic Model for Text
	6.2 Semantic Model for Numbers
	6.3 Local Resolution of NULL Values
	6.4

	7 ANALYSIS Operators
	8 Evaluation
	8.1 Setup
	8.2 Results

	9 Related Work
	10 Conclusion
	References

