
Generating Semantic Aspects for Queries

Dhruv Gupta1,2(B), Klaus Berberich1,3, Jannik Strötgen4,
and Demetrios Zeinalipour-Yazti5

1 Max Planck Institute for Informatics, Saarbrücken, Germany
{dhgupta,kberberi}@mpi-inf.mpg.de

2 Graduate School of Computer Science, Saarbrücken, Germany
3 htw saar, Saarbrücken, Germany

4 Bosch Center for Artificial Intelligence, Renningen, Germany
jannik.stroetgen@de.bosch.com

5 University of Cyprus, Nicosia, Cyprus
dzeina@cs.ucy.ac.cy

Abstract. Large document collections can be hard to explore if the
user presents her information need in a limited set of keywords. Ambigu-
ous intents arising out of these short queries often result in long-winded
query sessions and many query reformulations. To alleviate this prob-
lem, in this work, we propose the novel concept of semantic aspects (e.g.,
〈{michael-phelps}, {athens, beijing, london}, [2004, 2016]〉 for the ambigu-
ous query olympic medalists) and present the xFactor algorithm that
generates them from annotations in documents. Semantic aspects uplift
document contents into a meaningful structured representation, thereby
allowing the user to sift through many documents without the need to
read their contents. The semantic aspects are created by the analysis of
semantic annotations in the form of temporal, geographic, and named
entity annotations. We evaluate our approach on a novel testbed of over
5,000 aspects on Web-scale document collections amounting to more than
450 million documents. Our results show the xFactor algorithm finds rel-
evant aspects for highly ambiguous queries.

1 Introduction

When querying large document collections or the Web, it is challenging to
guide the user to relevant documents. This is because short and ambiguous
keyword queries posed to information retrieval (IR) systems represent many
possible information needs [15]. This is a known acute problem; it has been
shown that around 46% users issue reformulated queries [22]. To assist users
in refining their search, existing approaches use related terms [31], named enti-
ties in knowledge graphs (KGs) [13] or hand-crafted knowledge-panels [24]. Still
with these aids, the user must read and consult individual documents in the
ranked list to check for their relevance. What is therefore needed is a way of
uplifting the unstructured text in documents to a structured representation that
exposes its key aspects. To this end, we propose the novel concept of semantic

c© Springer Nature Switzerland AG 2019
P. Hitzler et al. (Eds.): ESWC 2019, LNCS 11503, pp. 162–178, 2019.
https://doi.org/10.1007/978-3-030-21348-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21348-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-21348-0_11

Generating Semantic Aspects for Queries 163

aspects (e.g., 〈{michael-phelps}, {athens, beijing, london}, [2004, 2016]〉) that help
users posing ambiguous queries (e.g., olympic medalists) explore document
collections without reading their contents.

Table 1. Generated semantic aspects for the query olympic medalists from the New
York Times document collection (covering 1987–2007). Each row in the table corre-
sponds to one semantic aspect.

Query: olympic medalists

epyTytitnEseititnEemiT

[1980,1988] yago:sergei-grinkov, yago:maya-usova,
yago:marina-klimova, yago:evgeni-platov,
yago:oksana-grishuk, yago:sergei-ponomarenko,
yago:ekaterina-gordeeva

wiki-category: olympic
medalists in figure skating

[1992,1992] yago:leroy-burrell, yago:jon-drummond,
yago:dennis-mitchell, yago:michael-marsh-(athlete)

wiki-category: american
sprinters

[1996,1996] yago:dominique-dawes, yago:shannon-miller,
yago:kerri-strug

wiki-category: olympic
medalists in gymnastics

[1998,1998] yago:jenni-meno, yago:kyoko-ina, yago:todd-eldredge,
yago:todd-sand, yago:nicole-bobek

wiki-category: figure skaters
at the 1998 winter olympics

To generate semantic aspects for ambiguous keyword queries, we turn to
natural language processing (NLP) tools that can help us enrich text with anno-
tations. In particular, we make use of annotations in the form of named entities
(persons and organizations), geographic locations, and temporal expressions.
These are extremely important annotations in the domain of IR [20,36]: 71% of
Web queries were found to mention named entities, while 30.9% of Web queries
were either explicitly or implicitly temporal in nature. Generation of meaningful
semantic aspects and their evaluation is challenging. To generate them, we must
first model and interpret the semantics underlying the annotations. For example,
temporal expressions can be highly uncertain (e.g., 90s) and two locations or
named entities in a KG can be related by many facts, e.g., ‘Maria Sharapova
lives in US but represents Russia in sports’ [4]. Moreover, queries can signify dif-
ferent kinds of ambiguities: temporal ambiguity (e.g., tokyo summer olympics

- 1964 or 2020), location ambiguity (e.g., rome - many US cities are named after
European cities), or entity ambiguity (e.g., spitz - Mark or Elisa Spitz). More-
over, since semantic aspects are more than “related terms” or facts in KGs there
currently exists no benchmark for their automatic evaluation.

Approach Outline. To solve the above challenges, we propose the following
solutions in this work. To generate semantic aspects, we describe the xFactor
algorithm (Sect. 4). xFactor takes as an input a large set of annotated docu-
ments retrieved for a keyword query and outputs a set of semantic aspects.
xFactor generates the semantic aspects in three steps. First, it partitions the
input document set by identifying salient sets of annotations in formal mod-
els that capture the semantics of an annotation type (e.g., named entities).
Second, xFactor additionally considers salient co-occurrences of annotations with

164 D. Gupta et al.

different semantics (e.g., named entities and temporal expressions) by virtue of
them being present in the same document partition. Third, it outputs all possible
ways of analyzing the initial ambiguity behind the query. This is done by permut-
ing the order in which the annotations are considered for partitioning the initial
set of documents. Table 1 shows examples of generated semantic aspects for the
ambiguous query olympic medalists. To perform automated evaluation of the
generated semantic aspects, we provide a novel evaluation benchmark compiled
from Wikipedia with new measures to the research community (Sect. 6).

2 Preliminaries

We first cover the required terminology to describe our method.

Document Model. Consider, a large annotated document collection D =
{d1, d2, . . . , d|D|}. Each document d ∈ D is processed with natural language
processing (NLP) annotators that tag sequences of words in the document with
annotations from a given type X (e.g., temporal expressions). Formally, let each
document be represented by n bags-of-annotations:

d = {dX1 , dX2 , . . . , dXn
}. (1)

Specifically, for this work, we consider the following semantic annotations:
temporal expressions, geographic locations, and other named entities (persons
and organizations). Thus, our document model refers to the bags-of-annotations
for entities (dE), locations (dG), and temporal expressions (dT): d = {dE , dG , dT }.

Aspect Model. Let an ambiguous query q reflect the information need of a
user. An information retrieval (IR) method in response to the query q returns
a set of pseudo-relevant documents R ⊂ D. The document set R conveys many
implicit information needs. The user’s information need may be a subset of those
reflected by the documents [15]. Our aim is to extract an ordered set of semantic
aspects A that make these implicit information needs explicit, thereby pointing
the user to the relevant documents:

A = 〈a1, a2, . . . , a|A|〉. (2)

An aspect a (e.g., 〈{michael-phelps}, {athens, beijing, london}, [2004, 2016]〉) is
determined by considering the salience of annotations sharing the same semantics
(e.g., temporal expressions) as well as co-occurrence with annotations of different
semantics (e.g., temporal expressions and named entities). An aspect a ∈ A
is modeled as: a = 〈x1, . . . , xn〉, where x (e.g., time interval) corresponds to
salient annotation(s) from type X (e.g., temporal expressions). For this work,
the aspects are modeled as: a = 〈aE , aG , aT 〉.
Annotation Models. For large-scale enrichment of text documents with
semantic annotations we utilize two different NLP tools. First, we make use
of a named entity recognition and disambiguation (NERD) tool Aida [26] to

Generating Semantic Aspects for Queries 165

annotate and disambiguate mentions of named entities to canonical entries in
KGs (i.e., Yago [34]). Second, to resolve expressions of time in text we leverage
a temporal tagger HeidelTime [33] that can annotate them with high precision.
We next explain the formal models for each of the annotation types.

Named Entities and Entity Model. Named entities in text are modeled as
canonical entries of a KG (e.g., Yago [34]). These annotations are obtained by
using NERD tools (e.g., Aida [26]). We differentiate between locations and other
named entities, by the presence of geographic coordinates in their KG entry. Let,
G and E denote the type information associated with locations and other enti-
ties, respectively. Named entities may share common relationships that convey a
degree of their relatedness. For example, tokyo and beijing are related as they
both lie in asia. These relationships in Wikipedia are encoded in the form of an
explicit link structure. Concretely, each named entity mention disambiguated by
Aida, is linked to its Wikipedia article. Each Wikipedia article contains links to
other Wikipedia articles, indicating their semantic relatedness. We model each
named entity by its Wikipedia link structure. Formally, each named entity e can
be described by the links � its article We has to other articles in Wikipedia W :

We = {�1, �2, . . . , �|W |}. (3)

Temporal Expressions and Time Model. Temporal expressions in docu-
ments can be annotated using temporal taggers (e.g., HeidelTime [33]). Such
annotators are able to identify and resolve explicit, implicit, relative, and under-
specified temporal expressions using metadata such as publication dates [33]. Let,
T denote the type information associated with temporal expressions. Each anno-
tation in T (i.e., dates) is represented by their UNIX time epochs (i.e., number
of milliseconds since 01-January-1970). Temporal expressions are challenging to
analyze as they can be present at different levels of granularity, e.g., day, month,
or year granularity. Furthermore, temporal expressions can indicate an uncertain
time interval, e.g., 1990s. In such cases, the begin and end of the time interval
conveyed is not clear. An uncertain temporal expression can therefore refer to
infinitely many time intervals. The uncertainty in temporal expressions can be
modeled by analyzing when the time interval could have begun and ended [8].
That is, the temporal expression 1990s can refer to any time interval that can
begin (b) in [1990, 1999] and end (e) in [1990, 1999]. In other words, b ∈ [b�, bu]
and e ∈ [e�, eu] (with b ≤ e) giving the uncertainty-aware time model [8]:

T = 〈b�, bu, e�, eu〉. (4)

For example, 1990s can now be represented as: 〈1990, 1999, 1990, 1999〉.

3 Generating Factors

To generate semantic aspects for a given query, we first need to compute salience
of annotations in models informed of their semantics. Thus, we are not simply

166 D. Gupta et al.

counting annotations but rather considering the salience of entities, locations,
and temporal expressions in their respective semantic models. We denote the
methods that compute salience as factor methods and the resulting salient
annotations as factors (e.g., sets of locations or time intervals). We next describe
how to find factors associated with each annotation type X in a document set
R by using its factoring method, factor(X ,R). Algorithm 1 outlines how fac-
tor methods use the salience computation for a given document partition and
annotation type.

Factoring Named Entities - factor(XG ,R) and factor(XE ,R). The factor
method for named entities outputs sets of entities and locations where each entity
in the set is related to the others in highly relevant documents. Concretely, to
create the factors (i.e., sets of locations and entities) we first compute: sim(e, e′),
semantic relatedness between entities e and e′. This is done by calculating the
Jaccard coefficient of links shared by the Wikipedia entries of e and e′:

sim(e, e′) =
|We ∩ We′ |
|We ∪ We′ | , (5)

We make use of Jaccard coefficient as entity relatedness measure, as it has shown
good performance over other relatedness measures [14]. Second, we weight the
entity-entity relatedness by the document relevance s(d,R) (given by the IR
method during retrieval) that contains them to compute entity salience s(e,R).
That is,

s(e,R) =
∑

d∈R
s(d,R) ·

∑

e′∈dE

sim(e, e′). (6)

Factoring Time - factor(XT ,R). Temporal expressions are challenging to
analyze. For instance, uncertain temporal expressions such as the 90s can refer
to an infinite number of time intervals. Thus, it becomes quite difficult to identify
salient time intervals. To overcome these limitations, we use the approach by
Gupta and Berberich [21] to generate factors for time. In brief, salient time
intervals (time factors) in R (i.e., s([b, e],R)) can be found by generating overlaps
of the temporal expressions in the uncertainty-aware time model and weighting
them by the document’s relevance, which contains the temporal expressions:

s([b, e],R) =
∑

d∈R
s(d,R) · sim([b, e], dT), (7)

where, s(d,R) denotes the document relevance and sim([b, e], dT) denotes the
salience of the time interval [b, e] in the document’s bag of temporal expressions
dT . The value of sim([b, e], dT) is computed as follows:

sim([b, e], dT) =
1

|dT | ·
∑

T∈dT

1([b, e] ∈ T)
|T | . (8)

In Eq. 8, the cardinality |T | denotes the number of time intervals T can
generate and the indicator function 1(•) tests the membership of [b, e] in T .

Generating Semantic Aspects for Queries 167

4 The xFactor Algorithm

In addition to annotation salience, we consider the co-occurrence salience of
annotations from different types to generate semantic aspects. To this end, we
propose the xFactor algorithm. Our xFactor algorithm is inspired by the Apriori
algorithm for frequent itemset mining [6]. The Apriori algorithm, however, is not
informed of annotation semantics. Thus, its direct application, will not capture
any semantic co-occurrence among different annotation types.

Consider, a document set R and its n annotation types {X1,X2, . . . ,Xn}. A
set of salient aspects A can be derived by iteratively partitioning R for different
annotation factors:

Basis Step : {x1} = factor(X1,R) (9)

Inductive Step : {xk} = factor(Xk,R(k−1)...(1)). (10)

First and foremost, the salience of a factor (e.g., time interval) in each aspect
is obtained by the factor method (Sect. 3) that considers a semantic model cor-
responding to its annotation type (e.g., temporal expressions). Second, each
factor for an annotation type allows us to partition the document set R into
documents that contain annotations that helped derive the factor and those
documents which did not help. Thus, by iteratively applying the factor methods
for the different annotation types, we can identify the salience between factors
by virtue of their co-occurrence in the same partition. Mathematically given by:

factor(X1,R) : {dX1 ∈ d | ∀d ∈ R} → 2X1 , (11)

factor(Xk,R(k−1)...(1)) : {dXk
∈ d | ∀d ∈ R(k−1)...(1)} → 2Xk . (12)

Third and finally, we create a partition index that keeps track of factors that
were generated by a particular partition of the pseudo-relevant set of documents
R. The partition index for iteration i of the recursive algorithm keeps track of:

Partition Index: 〈{xk}i, R
(k−1)...(1)
i 〉. (13)

By concatenating the factors of different annotation types, from the same
document partition, we can generate the aspects. Figure 1 exemplifies the recur-
sive xFactor algorithm and how the aspects are generated. The xFactor algorithm
thereby allows us to extract a subset of aspects that contain salient relationships
among their factors from all possible combinations of different annotation types:
A ⊂ 2X1×X2×...×Xn . Algorithm 2 illustrates a tail-recursive version of the xFactor
algorithm.

Minimum Salience and Aspect Ranking. The xFactor algorithm is still
computationally expensive if we were to consider every factor for each annotation
type. To prune the recursion depth, we utilize a minimum salience criteria. For a
given value of minimum salience σ ∈ [0, 1], a factor is deemed salient if and only
if: s(x,R) ≥ σ. Using the salience we furthermore rank the aspects presented to
the user as: s(a, d) =

∏
xi∈a s(xi, d).

168 D. Gupta et al.

Fig. 1. The lattice structure for aspect generation by the xFactor algorithm is shown.
Shapes in documents d represent annotation types. While colors represent different
annotation values for same annotation type. Each element in the lattice corresponds to
the partition of documents that arises by applying the factor method for that annota-
tion type. For example, R(T)

• is generated by factoring R along time. The time factor
a = 〈�,−,−〉 is generated by documents {d1, d5} ∈ R(T)

• . Continuing in this recursive
manner over the geographic annotation type G we get a = 〈�,�,−〉. The sequence of

factoring operations can be permuted to obtain different partitions; R(T)(G)(E)
• corre-

sponds to time → geography → entity (traversing the bold edges).

Algorithm 1: Generate Factors.

Function factor(X , R, σ)⋃
〈x, R′〉 ← generate pairs of: factors

using the semantic model for X and the
originating document partition.
factors ← ∅

foreach (〈x, R′〉 ∈
⋃

〈x, R′〉) do
if (s(x, R′) ≥ σ) then

factors.add(x)

PartitionIndex.put(〈x, R′〉)
return factors

Algorithm 2: The xFactor Algorithm.

Function xFactor(X1, X2, . . . , Xn, R, σ)
// The set of aspects to return
A ← ∅

xnFactors ← factor (Xn, R, σ)
foreach (xnFactor ∈ xnFactors) do

R′ ← PartitionIndex.get(xnFactor)

xn−1Factors ← factor(Xn−1, R′, σ)
. . .
foreach (x2Factor ∈ x2Factors) do

R′ ← PartitionIndex.get(x2Factor)

x1Factors ← factor(X1, R′, σ)
// Generate aspects
foreach (x1Factor ∈ x1Factors) do

A ←
A ∪ 〈x1Factor, . . . , xnFactor〉

. . .

return A

Generating Semantic Aspects for Queries 169

5 Properties of the xFactor Algorithm

Structured Representation of Documents. The aspects which are assim-
ilated from multiple documents can be used to transform the semi-structured
documents with annotations (i.e., d = {dE , dG , dT }) into a structured represen-
tation of aspects (i.e., d = 〈a1, a2, . . . , an〉). This structured representation of
documents using aspects is then immediately useful for applications in search
tasks, such as result diversification. To represent documents using aspects, we
can obtain the inverse mapping of documents to aspects by looking for all a ∈ A
associated with a particular document d in the partition index.

Query Pivoting. If the order in which the annotation types are factored are
permuted then the xFactor algorithm will produce different sets of aspects. This
is because the factor methods rely on a given document partition to generate
the factors. For instance, for three annotation types, we can realize six differ-
ent sets of aspects by permutation of the different factor methods. This in turn
provides us different ways of analyzing three different kinds of initial ambigu-
ity underlying the query: temporal ambiguity, e.g., tokyo summer olympics;
geographical ambiguity, e.g., springfield; and named entity related ambiguity,
e.g., george bush. If the sequence of factor methods is time → entity → geog-
raphy, then the resulting set of aspects will be denoted by A〈T ,E,G〉. The other
five possibilities are: A〈T ,G,E〉, A〈G,T ,E〉, A〈G,E,T 〉, A〈E,T ,G〉, and A〈E,G,T 〉. Using
the illustration in Fig. 1, these six factor sequences can be obtained by following
different paths in the lattice.

Summarizing Entity Sets. For each of the generated aspects, we can summa-
rize the resulting factors (e.g., named entities) using background knowledge (e.g.,
KG) into broader semantic classification types (e.g., categories from Wikipedia).
For instance, in Table 1, we have summarized all the named entities into cat-
egories from Wikipedia. Concretely, to arrive at the types for named entities,
we look up all the types that an entity belongs to (following rdfs:type and
rdfs:subClassOf links). Thereafter, we select the summary type as the one that
covers most of the entities in the entity factor.

6 Evaluation

We next describe the setup and results of our experimental evaluation.

6.1 Annotated Document Collections

Document Collections. We test our algorithm on two different types of doc-
ument collections. The first category of document collections consists of news
articles. News archives have the benefit of being accompanied by rich metadata
in the form of accurate publication dates and well-written text. This can aid
NLP tools to provide more accurate annotations. For example, temporal taggers
can resolve relative temporal expressions (e.g., yesterday) and implicit temporal

170 D. Gupta et al.

expressions (e.g., good friday) with respect to the publication date. We consider
two document collections in this category. One of them is a collection of approxi-
mately two million news articles published in the New York Times between 1987
and 2007. It is publicly available as the New York Times Annotated Corpus [5].
The other one is a collection of approximately four million news articles collected
from various online sources during the period of 2013 to 2016, called Stics [25].

The second category of document collection consists of web pages. Web crawls
unlike news articles have unreliable metadata and ill-formed language. This ham-
pers us in obtaining high-quality semantic annotations for them. For example,
we cannot resolve relative and underspecified temporal expressions, as the doc-
ument creation time for Web pages may not reflect their true publication dates.
We consider two web crawls [1,2] from 2009 and 2012, which are publicly avail-
able as ClueWeb’09 and ClueWeb’12 document collections, respectively. Statistics
for the document collections are summarized in Table 2.

Annotating Documents. Semantic annotations are central to our approach.
To obtain them, we utilize publicly available annotations for the document col-
lections or automatically generate them using NLP tools. For the news archives
and for ClueWeb’09, we utilized Aida [26], which performs named entity recog-
nition and disambiguation. Each disambiguated named entity is linked to its
canonical entry in the Yago KG and Wikipedia. As a subset of these named
entities, we can obtain geographic locations. For ClueWeb’12, we utilized the
FACC annotations [17] provided by Google. The FACC annotations contain the
offsets of high precision entities spotted in the web pages. Temporal expressions
for all the document collections were obtained using the HeidelTime temporal
tagger [33]. In Table 2, we additionally report the average counts of the three
types of semantic annotations found in at most 10,000 documents retrieved for
each query in our testbed.

Table 2. Collection statistics.

Collection #Documents Avg. Time Avg. Entities Avg. Locations

NewYorkTimes 1,679,374 12.50 16.25 8.65
Stics 4,075,720 10.09 10.89 5.93
ClueWeb’09 50,220,423 30.59 8.23 9.49
ClueWeb’12 408,878,432 5.80 7.74 5.61

6.2 Ground Truth Semantic Aspects and Queries

To evaluate our system, we extracted 5,122 aspects from Wikipedia. This was
done considering their diversity along annotation types of time, locations, and
other named entities for a set of twenty-five keyword queries. The broad topics
of the aspects along with the specific keyword queries and the number of aspects
generated are listed in Table 4.

Generating Semantic Aspects for Queries 171

For each query, we constructed a set of ground-truth aspects by consider-
ing the table of events present on the Wikipedia page corresponding to the
query [3,9]. For the table, we considered each row consisting of time, loca-
tions, and other entities as an aspect. If no locations or entities were men-
tioned, we extracted them from the associated event page of the row, by run-
ning Aida on the introductory paragraph of the event’s Wikipedia page. For
instance, consider Table 3 as an example Wikipedia table for Olympic medal-
ists. Treating each row as a ground truth aspect, we look for temporal expres-
sions, e.g., [2008, 2016] as a time factor; locations, e.g., Beijing, London, and
Rio de Janeiro as a location factor; and other named entities, e.g., Usain Bolt
as an entity factor. Similarly, for the second row in Table 3, the extracted
aspect is: 〈[2004, 2016], {athens, beijing, london, rio-de-janeiro}, {michael-phelps}〉.
The testbed is publicly available at the following URL: http://resources.mpi-inf.

mpg.de/dhgupta/data/eswc2019/.

Table 3. An example table of events for generating ground truth.

snoitacoLnoitpircseDsraeY

2008 to
2016

Usain Bolt won total of 9 Olympic medals during the
Summer Olympic games in the years he was active.

Beijing, London, and
Rio de Janeiro

2004 to
2016

Michael Phelps has won a record number of 23 gold
medals at various Olympic games during his career.

Athens, Beijing, London, and
Rio de Janeiro

6.3 Measures

The two key characteristics for evaluating aspects are: their correctness with
respect to a ground truth and their novelty with respect to other aspects in
the set. These two characteristics taken together ensure that our aspect sets are
meaningful and non-redundant. We next describe the measures of correctness
and novelty.

Similarity computation between aspects is central to both the correctness
and novelty. To compute the similarity between the two aspects, a (system gen-
erated) and b (ground truth), we consider their similarity dimension-wise:

sim(a, b)=
1
3

(
|a[b,e] ∩ b[b,e]|

|a[b,e]|
+

|aE ∩ bE |
|aE | +

|aG ∩ bG |
|aG |

)
,

where, for temporal similarity we coarsen the time intervals at year granular-
ity to make them comparable. The temporal overlaps are computed using the
uncertainty-aware time model [8] by converting the time intervals to the four-
tuple notation. While for the other two dimensions the similarity is akin to
computing the overlap between bag-of-locations and bag-of-entities. Note that
the similarity computation is done with respect to the system generated aspect

http://resources.mpi-inf.mpg.de/dhgupta/data/eswc2019/
http://resources.mpi-inf.mpg.de/dhgupta/data/eswc2019/

172 D. Gupta et al.

Table 4. Query categories with factor operation sequences and aspect counts (in
brackets).

Entity - A〈E,•,•〉 : nobel prize [114] |oscars [1, 167] |space shuttle missions [155] |olympic
medalists [48] |paralympic medalists [24]

Location - A〈G,•,•〉 : aircraft accidents [513] | avalanches [56] | epidemics [211] | famines [133]
| genocides [35] | volcanic eruptions [171] | hailstorms [39] | landslides [85] | earthquakes [39] |
nuclear accidents [26] | oil spills [140] | tsunamis [88]

Time - A〈T ,•,•〉 : assassinations [130] | cold war [81] | corporate scandals [44] | proxy wars [34]
| united states presidential elections [57] | terror attacks [316] | treaties [1, 057] | wars [359]

(a in the denominator). This is done to avoid matching (and thereby not reward-
ing) those system aspects a with a very large time interval, bag-of-locations or
bag-of-entities, to every ground truth aspect (b).

Correctness. Given a set of aspects A generated by our algorithm for a query
q and the set of aspects B corresponding to the ground truth derived from
Wikipedia page for the same query, correctness is given by:

correctness(A,B)=
1

|A|
∑

a∈A

1
|B|

∑

b∈B
sim(a, b).

Novelty for the set of aspects A can be intuitively thought of measuring the
dissimilarity with respect to A itself:

novelty(A)=
1

|A|
∑

a∈A

1
|A|

∑

(a′∈A/{a})

(
1 − sim(a, a′)

)
.

We can additionally conform the correctness measure to the standard infor-
mation retrieval measures such as precision and recall as follows:

precision=
1

|A|
∑

a∈A
max
b∈B

(
sim(a, b)

)
& recall=

1
|B|

∑

b∈B
max
a∈A

(
sim(a, b)

)
.

6.4 Evaluation Setup

Baselines and Systems. We consider two baselines to compare our proposed
approach. As a näıve baseline, we treated each document in the pseudo-relevant
set to represent an aspect. This is equivalent to presenting the user a ranked list of
documents to satisfy her information need. The equivalent aspect for a document
is constructed by considering the earliest and latest time point in the document as
its time interval and bag-of-locations and bag-of-entities to represent the other
two dimensions. As a second baseline, we consider latent Dirichlet allocation
(LDA) [12]. With this baseline, we want to cluster together those documents that
are semantically similar using only text. Using LDA, we discover k topics from
the pseudo-relevant set of documents. From each topic’s partition of documents,

Generating Semantic Aspects for Queries 173

Table 5. Results for news archives.

(a) Results for correctness (C) & novelty (N).

NewYorkTimes Stics

µ|A| C N µ|A| C N

BM25 3,096 .0237 .4269 3,797 .0204 .4227

LDA-50 50 .0067 .2634 50 .0102 .2910
LDA-100 100 .0053 .2107 100 .0080 .2404
LDA-200 200 .0046 .1497 200 .0063 .1639

xFactor 2,261 .0161 .4201 503 .0190 .3862

(b) Results for precision (P) & recall (R).

NewYorkTimes Stics

µ|A| P R µ|A| P R

BM25 3,096 .1577 .2749 3,797 .1414 .2828

LDA-50 50 .0471 .0160 50 .0634 .0311
LDA-100 100 .0432 .0102 100 .0483 .0207
LDA-200 200 .0400 .0070 200 .0456 .0129

xFactor 2,261 .2804 .1777 503 .2400 .1427

we derive the corresponding semantic aspect by considering the earliest and
latest time point in the partition as its time interval and bag-of-entities and
bag-of-locations to represent the two remaining dimensions. We refer to this
baseline as LDA-k. For the xFactor algorithm, we considered the specific sequence
of factor operations that were deemed meaningful for that query (as shown in
Table 4). For instance, since the query earthquakes is oriented towards locations
we considered the factor sequence operations A〈G,E,T 〉 and A〈G,T ,E〉.

Parameters. For each query in Table 4, we retrieve at most 10,000 documents
with disjunctive operator using Okapi BM25 as the retrieval method. We used
the standard parameters, b = 0.75 and k1 = 1.20, for its configuration. For the
LDA baseline, we followed Griffiths and Steyvers [19] for setting its parameters.
Specifically, β was set to 0.1 and α was set to 50/|topics|. We considered three topic
set sizes for LDA namely, |topics| ∈ {50, 100, 200} and the same number of top-k
documents for each topic, e.g., for |topics| = 50, we picked top-50 documents
for each topic as its generating partition. For our method, the minimum salience
was set to σ = 0.001.

6.5 Results for Quality

Results for News Archives. We first consider the results of the systems in
terms of correctness and novelty as reported in Table 5a. We additionally report
the average number of aspects μ|A| for each system under comparison. Note that
the Okapi BM25 baseline gives us an upper bound for the value of correctness
that can be obtained against the ground-truth. As, ultimately we generate the
LDA topics and aspect from this set of documents. For the New York Times collec-
tion, our method identifies the most correct aspects with respect to the ground
truth as compared to the LDA baselines. Despite the observation that Okapi
BM25 wins in terms of novelty by considering all pseudo-relevant documents,
our method still achieves a high degree of novelty, thereby identifying the most
non-redundant set of aspects and is able to partition the set of pseudo-relevant
documents to the greatest degree. For the Stics news collection, our method out-
performs the LDA baselines in terms of correctness and is close to the upper
bound that can be achieved from the given set of pseudo-relevant documents.
Okapi BM25 achieves a higher novelty value, however, the increase compared

174 D. Gupta et al.

Table 6. Results for web collections.

(a) Results for correctness (C) & novelty (N).

ClueWeb’09 ClueWeb’12

µ|A| C N µ|A| C N

BM25 9,580 .0155 .3958 9,742 .0266 .4531

LDA-50 50 .0123 .3275 50 .0177 .3478
LDA-100 100 .0092 .2880 100 .0126 .3025
LDA-200 200 .0064 .2441 200 .0097 .2554

xFactor 1,822 .0146 .4239 616 .0173 .4176

(b) Results for precision (P) & recall (R).

ClueWeb’09 ClueWeb’12

µ|A| P R µ|A| P R

BM25 9,580 .1151 .3595 9,742 .1494 .4018

LDA-50 50 .0734 .0999 50 .0930 .1049
LDA-100 100 .0560 .0808 100 .0718 .0770
LDA-200 200 .0433 .0502 200 .0585 .0500

xFactor 1,822 .2218 .1880 616 .2433 .1648

to our method is not significant. Observing both correctness and novelty our
method excels in providing both relevant and non-redundant sets of aspects
when compared to the LDA baselines which can only achieve high novelty.

Now, consider precision and recall for the systems, as reported in Table 5b.
For the New York Times, while considering precision, our system consists of more
relevant aspects compared to the baselines. With respect to recall, the Okapi
BM25 baseline wins by considering the entire pseudo-relevant set of documents.
Note that the LDA baselines and our algorithm xFactor can not achieve this
value as they discard many annotations, favoring precision over recall. Therefore,
considering both precision and recall together, our system presents a balanced
performance: high precision and recall. While the baselines achieve high recall
only. For the Stics collection, when considering precision and recall, our method
again shows significant improvements over the baselines. Thus, by taking all the
four measures, correctness, novelty, precision, and recall, our method allows us
to distill interesting aspects which can guide the user to navigate through a large
number of documents.

Results for Web Collections. Web archives give us more challenging doc-
uments to test the effectiveness of our approach. Particularly, since they are
not well-formed, they have a lower average number of annotations per docu-
ment, the annotations in them are prone to more errors, and the size of the
web archives is magnitudes larger than news archives. Hence, they present a
challenging real-world scenario to test our methods. We first consider the results
for the web archives when measuring correctness and novelty that are reported
in Table 6a. For ClueWeb’09, our method outperforms both baselines in terms
of novelty. In particular, for correctness our method comes close to the upper
bound established by Okapi BM25. For ClueWeb’12 our method performs at par
with baselines in terms of novelty. When considering the measures in isolation,
for correctness the LDA baseline wins over our method and Okapi BM25 baseline
has higher novelty than our method. However, when considering both correct-
ness and novelty together, xFactor is consistent in providing more correct and
novel aspects as opposed to the LDA baselines.

Next, we consider the second set of experimental results for web collec-
tions when measuring precision and recall that are reported in Table 6b. For
ClueWeb’09, our method in terms of precision and recall outperforms the LDA

Generating Semantic Aspects for Queries 175

Table 7. Results for precision and recall at k = {10, 20, 50}.

(a) Results on news archives.

NewYorkTimes Stics

P@10 P@25 P@50 P@10 P@25 P@50

BM25 .1874 .1863 .1909 .1380 .1394 .1461

LDA-50 .0453 .0464 .0471 .0592 .0590 .0634
LDA-100 .0426 .0431 .0430 .0487 .0481 .0476
LDA-200 .0396 .0397 .0400 .0440 .0434 .0440

xFactor .2283 .2450 .2366 .1690 .1869 .1740

R@10 R@25 R@50 R@10 R@25 R@50

BM25 .2593 .2672 .2510 .2732 .2834 .2700

LDA-50 .0172 .0148 .0133 .0310 .0294 .0270
LDA-100 .0130 .0104 .0092 .0216 .0192 .0174
LDA-200 .0101 .0075 .0062 .0148 .0126 .0113

xFactor .1729 .1691 .1633 .1274 .1295 .1237

(b) Results on Web collections.

ClueWeb’09 ClueWeb’12

P@10 P@25 P@50 P@10 P@25 P@50

BM25 .1111 .1183 .1217 .1436 .1451 .1521

LDA-50 .0792 .0770 .0734 .0982 .0961 .0930
LDA-100 .0714 .0634 .0601 .0876 .0828 .0756
LDA-200 .0591 .0526 .0485 .0697 .0644 .0602

xFactor .1771 .1909 .1919 .1999 .1990 .2018

R@10 R@25 R@50 R@10 R@25 R@50

BM25 .3632 .3973 .3380 .3867 .4357 .3727

LDA-50 .1000 .1036 .0894 .0963 .1153 .0940
LDA-100 .0864 .0856 .0750 .0722 .0832 .0681
LDA-200 .0524 .0571 .0450 .0446 .0534 .0421

xFactor .1523 .1649 .1532 .1469 .1607 .1362

baselines significantly. For ClueWeb’12, our method outperforms both baselines
with respect to precision. However, in terms of recall Okapi BM25 outperforms
our method when considering all the pseudo-relevant documents. Despite of this,
our method provides a balanced performance with high precision and moderate
recall as compared to the baselines which have high recall but very low precision.

6.6 Results for Ranking

Results for News Archives. The results of precision and recall at k = {10, 25,
50} for the news archives are shown in Table 7a. As we can observe, the rank-
ing provided by xFactor surpasses both the Okapi BM25 and LDA baselines in
terms of precision for both the New York Times and Stics archives. While, our
proposed algorithm provides a high level of recall for both the news archives
when compared to LDA baseline.

Results for Web Collections. The results of precision and recall at k =
{10, 25, 50} for the Web collections are shown in Table 7b. Similar to the obser-
vations made in the case of news archives, we see that the aspects extracted by
xFactor at increasing ranks result in higher precision than both the baselines. Our
algorithm further provides high recall at increasing rank positions as compared
to the LDA baselines, while the Okapi BM25, considering all the annotations in
each document outperform our system and the LDA baseline.

Overall Summary

Our experiments on two large news archives show that annotations in the form
of temporal expressions, locations, and other entities can be used to identify

176 D. Gupta et al.

semantic aspects that are correct and novel for document exploration. On Web-
scale corpora, where quality annotations are few, xFactor can also identify precise
aspects for information consumption. Moreover, using annotation and co-occur-
rence salience, xFactor shows it can produce ranked list of highly-relevant aspects.

7 Related Work

Structuring Text for Search. [23] proposed TextTiling, an algorithm for iden-
tifying coherent passages (subtopics) in text documents. [28] utilized LDA to
identify topics in documents for their structured representation. However, both
approaches were not informed of semantic annotations, which we leverage to
identify aspects for structuring text for search.

Faceted Search. Faceted Search systems allow a user to navigate document
collections and prune irrelevant documents by displaying important features
about them. [16,27] rely only on text to mine keyword lists present in pseudo-
relevant documents for generating aspects. [7] discussed various algorithms that
allowed business intelligence aggregations and advanced dynamic discovery of
correlated facets across multiple dimensions. [29] leveraged semantic metadata
present in Wikipedia such as entities and their associated category for automated
generation of facets for exploring Wikipedia articles. [18] considered the use of
named entities and their relationships in graphs for generating facets in DBpedia
abstracts. Our approach, in contrast, considers the underlying semantics for each
annotation during the generation of aspects. We additionally consider temporal
expressions and geographic locations as additional annotations. Furthermore,
we model the co-occurrences between different annotation types for generating
aspects.

Temporal Search. [35] analyzed annotated documents for recommending
related entities given an entity and an associated text. For this, the authors
used temporal expressions, KGs and word embeddings. In a similar vein, [10]
looked into incorporating temporal knowledge into embeddings for KGs. [11]
on the other hand, analyze query logs to recommend time intervals for queries
about events. In contrast, our approach models the uncertainty behind temporal
expressions when generating query aspects. Our xFactor algorithm is additionally
extensible to other annotation types (e.g., locations, numbers and sentiment).
Moreover, xFactor allows query pivoting, thereby disambiguating query intent
using different annotation types.

Entity Search. [30] leverage search-engine query logs to mine and suggest enti-
ties of relevance given an entity-oriented query. They consider metadata associ-
ated with the queries in the query log for their approach e.g., user clicks, user
sessions, and query issue timestamps. [32] propose a method for recommend-
ing related entities for entity-centric queries using pseudo relevance feedback
from retrieved documents and KGs. Their work, however, does not tap into the
document contents or temporal expressions for generating aspects.

Generating Semantic Aspects for Queries 177

8 Conclusions

In this work, we discussed the xFactor algorithm that leverages semantic anno-
tations such as temporal expressions, geographic locations, and other named
entities to generate semantic aspects. The xFactor algorithm consists of factor
methods that model the semantics of annotations in order to compute their
salience. xFactor additionally considers the co-occurrence salience of annotations
of different types to generate semantic aspects. Furthermore, the factor methods
can be applied in different orders to disambiguate different types of ambiguities
underlying the query and thereby identifying the most relevant set of semantic
aspects for it. Our experiments on two types of document collections that include
news archives and Web collections, show that the xFactor algorithm allows the
user to navigate through messy unstructured text in a structured manner.

References

1. The ClueWeb09 dataset. http://lemurproject.org/clueweb09/
2. The ClueWeb12 dataset. http://lemurproject.org/clueweb12/
3. List of lists of lists. https://en.wikipedia.org/wiki/List of lists of lists
4. Maria Sharapova. https://en.wikipedia.org/wiki/Maria Sharapova
5. The New York Times Annotated Corpus. https://catalog.ldc.upenn.edu/

LDC2008T19
6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: VLDB 1994, pp. 487–499 (1994)
7. Ben-Yitzhak, O., et al.: Beyond basic faceted search. In: WSDM 2008, pp. 33–44

(2008)
8. Berberich, K., Bedathur, S., Alonso, O., Weikum, G.: A language modeling app-

roach for temporal information needs. In: Gurrin, C., et al. (eds.) ECIR 2010.
LNCS, vol. 5993, pp. 13–25. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12275-0 5

9. Bhagavatula, C.S., Noraset, T., Downey, D.: TabEL: entity linking in web tables.
In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 425–441. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6 25

10. Bianchi, F., Palmonari, M., Nozza, D.: Towards encoding time in text-based entity
embeddings. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp.
56–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 4

11. Nguyen, T.N., Kanhabua, N., Nejdl, W.: Multiple models for recommending tem-
poral aspects of entities. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol.
10843, pp. 462–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93417-4 30

12. Blei, D.M., et al.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022
(2003)

13. Bordino, I., et al.: Beyond entities: promoting explorative search with bundles. Inf.
Retr. J. 19(5), 447–486 (2016)

14. Ceccarelli, D., et al.: Learning relatedness measures for entity linking. In: CIKM
2013, pp. 139–148 (2013)

15. Clarke, C.L.A., et al.: Novelty and diversity in information retrieval evaluation. In:
SIGIR 2008, pp. 659–666 (2008)

http://lemurproject.org/clueweb09/
http://lemurproject.org/clueweb12/
https://en.wikipedia.org/wiki/List_of_lists_of_lists
https://en.wikipedia.org/wiki/Maria_Sharapova
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
https://doi.org/10.1007/978-3-642-12275-0_5
https://doi.org/10.1007/978-3-642-12275-0_5
https://doi.org/10.1007/978-3-319-25007-6_25
https://doi.org/10.1007/978-3-030-00671-6_4
https://doi.org/10.1007/978-3-319-93417-4_30
https://doi.org/10.1007/978-3-319-93417-4_30

178 D. Gupta et al.

16. Dou, Z., et al.: Finding dimensions for queries. In: CIKM 2011, pp. 1311–1320
(2011)

17. Gabrilovich, E., et al.: FACC1: freebase annotation of ClueWeb corpora, version 1
(release date 2013-06-26, format version 1, correction level 0), June 2013

18. Grau, B.C. et al.: SemFacet: faceted search over ontology enhanced knowledge
graphs. In: ISWC 2016 (2016)

19. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci.
101(Suppl. 1), 5228–5235 (2004)

20. Guo, J., et al.: Named entity recognition in query. In: SIGIR 2009, pp. 267–274
(2009)

21. Gupta, D., Berberich, K.: Identifying time intervals of interest to queries. In: CIKM
2014, pp. 1835–1838 (2014)

22. Hearst, M.A.: Search User Interfaces, 1st edn. Cambridge University Press, New
York (2009)

23. Hearst, M.A., Plaunt, C.: Subtopic structuring for full-length document access. In:
SIGIR 1993. pp. 59–68 (1993)

24. Henry, J.: Providing knowledge panels with search results, 2 May 2013. https://
www.google.com/patents/US20130110825. US Patent App. 13/566,489

25. Hoffart, J., et al.: STICS: searching with strings, things, and cats. In: SIGIR 2014,
pp. 1247–1248 (2014)

26. Hoffart, J., et al.: Robust disambiguation of named entities in text. In: EMNLP
2011, pp. 782–792 (2011)

27. Kong, W., Allan, J.: Extracting query facets from search results. In: SIGIR 2013,
pp. 93–102 (2013)

28. Koutrika, G., et al.: Generating reading orders over document collections. In: ICDE
2015, pp. 507–518 (2015)

29. Li, C., et al.: Facetedpedia: Dynamic generation of query-dependent faceted inter-
faces for Wikipedia. In: WWW 2010, pp. 651–660 (2010)

30. Reinanda, R., et al.: Mining, ranking and recommending entity aspects. In: SIGIR
2015, pp. 263–272 (2015)

31. Santos, R.L.T., et al.: Search result diversification. Found. Trends R© Inf. Retr. 9(1),
1–90 (2015)

32. Schuhmacher, M., et al.: Ranking entities for web queries through text and knowl-
edge. In: CIKM 2015, pp. 1461–1470 (2015)

33. Strötgen, J., Gertz, M.: Multilingual and cross-domain temporal tagging. Lang.
Resour. Eval. 47(2), 269–298 (2013)

34. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from wikipedia
and wordnet. Web Semant. 6(3), 203–217 (2008)

35. Tran, N.K., Tran, T., Niederée, C.: Beyond time: dynamic context-aware entity
recommendation. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hit-
zler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 353–368. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 22

36. Zhang, R., et al.: Learning recurrent event queries for web search. In: EMNLP
2010, pp. 1129–1139 (2010)

https://www.google.com/patents/US20130110825
https://www.google.com/patents/US20130110825
https://doi.org/10.1007/978-3-319-58068-5_22

	Generating Semantic Aspects for Queries
	1 Introduction
	2 Preliminaries
	3 Generating Factors
	4 The xFactor Algorithm
	5 Properties of the xFactor Algorithm
	6 Evaluation
	6.1 Annotated Document Collections
	6.2 Ground Truth Semantic Aspects and Queries
	6.3 Measures
	6.4 Evaluation Setup
	6.5 Results for Quality
	6.6 Results for Ranking

	7 Related Work
	8 Conclusions
	References

